Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.02021
Cited By
Understanding Short-Horizon Bias in Stochastic Meta-Optimization
6 March 2018
Yuhuai Wu
Mengye Ren
Renjie Liao
Roger C. Grosse
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Short-Horizon Bias in Stochastic Meta-Optimization"
42 / 42 papers shown
Title
Reinforcement Teaching
Alex Lewandowski
Calarina Muslimani
Dale Schuurmans
Matthew E. Taylor
Jun Luo
81
1
0
28 Jan 2025
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
El Mahdi Chayti
Martin Jaggi
30
1
0
05 Sep 2024
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
49
5
0
21 Apr 2023
Learning To Optimize Quantum Neural Network Without Gradients
Ankit Kulshrestha
Xiaoyuan Liu
Hayato Ushijima-Mwesigwa
Ilya Safro
20
5
0
15 Apr 2023
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
Jiayang Li
Jiahao Yu
Boyi Liu
Zhaoran Wang
Y. Nie
35
6
0
20 Feb 2023
Online Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
35
5
0
30 Jan 2023
A Survey of Meta-Reinforcement Learning
Jacob Beck
Risto Vuorio
E. Liu
Zheng Xiong
L. Zintgraf
Chelsea Finn
Shimon Whiteson
OOD
OffRL
37
122
0
19 Jan 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
Learning to Optimize with Dynamic Mode Decomposition
Petr Simánek
Daniel Vasata
Pavel Kordík
31
5
0
29 Nov 2022
An Investigation of the Bias-Variance Tradeoff in Meta-Gradients
Risto Vuorio
Jacob Beck
Shimon Whiteson
Jakob N. Foerster
Gregory Farquhar
24
8
0
22 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
FedML
29
11
0
19 Sep 2022
Theseus: A Library for Differentiable Nonlinear Optimization
Luis Pineda
Taosha Fan
Maurizio Monge
S. Venkataraman
Paloma Sodhi
...
Austin S. Wang
Stuart Anderson
Jing Dong
Brandon Amos
Mustafa Mukadam
29
76
0
19 Jul 2022
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
44
149
0
01 Jun 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
45
19
0
13 Mar 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
A Simple Guard for Learned Optimizers
Isabeau Prémont-Schwarz
Jaroslav Vítkru
Jan Feyereisl
49
7
0
28 Jan 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Linear Speedup in Personalized Collaborative Learning
El Mahdi Chayti
Sai Praneeth Karimireddy
Sebastian U. Stich
Nicolas Flammarion
Martin Jaggi
FedML
18
13
0
10 Nov 2021
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
28
93
0
10 Nov 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Haebeom Lee
Hayeon Lee
Jaewoong Shin
Eunho Yang
Timothy M. Hospedales
Sung Ju Hwang
DD
20
2
0
06 Oct 2021
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
38
58
0
09 Sep 2021
On Accelerating Distributed Convex Optimizations
Kushal Chakrabarti
Nirupam Gupta
Nikhil Chopra
26
7
0
19 Aug 2021
Analyzing Monotonic Linear Interpolation in Neural Network Loss Landscapes
James Lucas
Juhan Bae
Michael Ruogu Zhang
Stanislav Fort
R. Zemel
Roger C. Grosse
MoMe
164
28
0
22 Apr 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
44
6
0
09 Nov 2020
Reverse engineering learned optimizers reveals known and novel mechanisms
Niru Maheswaranathan
David Sussillo
Luke Metz
Ruoxi Sun
Jascha Narain Sohl-Dickstein
22
21
0
04 Nov 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
33
62
0
23 Sep 2020
Offline Meta-Reinforcement Learning with Advantage Weighting
E. Mitchell
Rafael Rafailov
Xue Bin Peng
Sergey Levine
Chelsea Finn
OffRL
33
103
0
13 Aug 2020
MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of Gradients
Chenfei Zhu
Yu Cheng
Zhe Gan
Furong Huang
Jingjing Liu
Tom Goldstein
ODL
32
2
0
21 Jun 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
52
1,928
0
11 Apr 2020
Modular Meta-Learning with Shrinkage
Yutian Chen
A. Friesen
Feryal M. P. Behbahani
Arnaud Doucet
David Budden
Matthew W. Hoffman
Nando de Freitas
KELM
OffRL
17
35
0
12 Sep 2019
Lookahead Optimizer: k steps forward, 1 step back
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
36
719
0
19 Jul 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
Incremental Few-Shot Learning with Attention Attractor Networks
Mengye Ren
Renjie Liao
Ethan Fetaya
R. Zemel
CLL
30
181
0
16 Oct 2018
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
Jinghui Chen
Dongruo Zhou
Yiqi Tang
Ziyan Yang
Yuan Cao
Quanquan Gu
ODL
19
193
0
18 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
44
0
12 Jun 2018
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
48
1,410
0
24 Mar 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
359
11,684
0
09 Mar 2017
1