ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.05968
13
13

Linear Speedup in Personalized Collaborative Learning

10 November 2021
El Mahdi Chayti
Sai Praneeth Karimireddy
Sebastian U. Stich
Nicolas Flammarion
Martin Jaggi
    FedML
ArXivPDFHTML
Abstract

Collaborative training can improve the accuracy of a model for a user by trading off the model's bias (introduced by using data from other users who are potentially different) against its variance (due to the limited amount of data on any single user). In this work, we formalize the personalized collaborative learning problem as a stochastic optimization of a task 0 while giving access to N related but different tasks 1,..., N. We provide convergence guarantees for two algorithms in this setting -- a popular collaboration method known as weighted gradient averaging, and a novel bias correction method -- and explore conditions under which we can achieve linear speedup w.r.t. the number of auxiliary tasks N. Further, we also empirically study their performance confirming our theoretical insights.

View on arXiv
Comments on this paper