Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.00094
Cited By
Neural Networks Should Be Wide Enough to Learn Disconnected Decision Regions
28 February 2018
Quynh N. Nguyen
Mahesh Chandra Mukkamala
Matthias Hein
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Networks Should Be Wide Enough to Learn Disconnected Decision Regions"
28 / 28 papers shown
Title
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
129
37
0
29 Apr 2023
A Tropical Approach to Neural Networks with Piecewise Linear Activations
Vasileios Charisopoulos
Petros Maragos
55
40
0
22 May 2018
Bounding and Counting Linear Regions of Deep Neural Networks
Thiago Serra
Christian Tjandraatmadja
Srikumar Ramalingam
MLT
59
249
0
06 Nov 2017
Approximating Continuous Functions by ReLU Nets of Minimal Width
Boris Hanin
Mark Sellke
103
234
0
31 Oct 2017
Optimization Landscape and Expressivity of Deep CNNs
Quynh N. Nguyen
Matthias Hein
61
29
0
30 Oct 2017
The Expressive Power of Neural Networks: A View from the Width
Zhou Lu
Hongming Pu
Feicheng Wang
Zhiqiang Hu
Liwei Wang
96
892
0
08 Sep 2017
Classification regions of deep neural networks
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
Stefano Soatto
57
51
0
26 May 2017
The loss surface of deep and wide neural networks
Quynh N. Nguyen
Matthias Hein
ODL
131
284
0
26 Apr 2017
Understanding Deep Neural Networks with Rectified Linear Units
R. Arora
A. Basu
Poorya Mianjy
Anirbit Mukherjee
PINN
143
640
0
04 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
461
3,138
0
04 Nov 2016
Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review
T. Poggio
H. Mhaskar
Lorenzo Rosasco
Brando Miranda
Q. Liao
97
578
0
02 Nov 2016
Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks
Itay Safran
Ohad Shamir
80
174
0
31 Oct 2016
Why Deep Neural Networks for Function Approximation?
Shiyu Liang
R. Srikant
107
385
0
13 Oct 2016
Error bounds for approximations with deep ReLU networks
Dmitry Yarotsky
175
1,226
0
03 Oct 2016
Deep vs. shallow networks : An approximation theory perspective
H. Mhaskar
T. Poggio
147
342
0
10 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,893
0
08 Jul 2016
On the Expressive Power of Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
61
786
0
16 Jun 2016
Convolutional Rectifier Networks as Generalized Tensor Decompositions
Nadav Cohen
Amnon Shashua
60
153
0
01 Mar 2016
Benefits of depth in neural networks
Matus Telgarsky
330
608
0
14 Feb 2016
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
195
732
0
12 Dec 2015
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
275
5,518
0
23 Nov 2015
Representation Benefits of Deep Feedforward Networks
Matus Telgarsky
76
242
0
27 Sep 2015
On the Expressive Power of Deep Learning: A Tensor Analysis
Nadav Cohen
Or Sharir
Amnon Shashua
79
470
0
16 Sep 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
280
18,587
0
06 Feb 2015
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
251
14,704
0
20 Jun 2014
On the Number of Linear Regions of Deep Neural Networks
Guido Montúfar
Razvan Pascanu
Kyunghyun Cho
Yoshua Bengio
88
1,254
0
08 Feb 2014
On the number of response regions of deep feed forward networks with piece-wise linear activations
Razvan Pascanu
Guido Montúfar
Yoshua Bengio
FAtt
111
257
0
20 Dec 2013
Sum-Product Networks: A New Deep Architecture
Hoifung Poon
Pedro M. Domingos
TPM
74
758
0
14 Feb 2012
1