Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.00092
Cited By
NETT: Solving Inverse Problems with Deep Neural Networks
28 February 2018
Housen Li
Johannes Schwab
Stephan Antholzer
Markus Haltmeier
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NETT: Solving Inverse Problems with Deep Neural Networks"
50 / 100 papers shown
Title
Deep Learning Adapted Acceleration for Limited-view Photoacoustic Computed Tomography
Hengrong Lan
Jiali Gong
Fei Gao
19
8
0
08 Nov 2021
Survey of Deep Learning Methods for Inverse Problems
S. Kamyab
Zihreh Azimifar
Rasool Sabzi
Paul Fieguth
21
3
0
07 Nov 2021
Learning convex regularizers satisfying the variational source condition for inverse problems
Subhadip Mukherjee
A. Bonafonte
Mateusz Lajszczak
8
9
0
24 Oct 2021
StyleGAN-induced data-driven regularization for inverse problems
Arthur Conmy
Subhadip Mukherjee
Carola-Bibiane Schönlieb
GAN
19
3
0
07 Oct 2021
Deep learning based dictionary learning and tomographic image reconstruction
Jevgenija Rudzusika
Thomas Koehler
Ozan Oktem
54
3
0
26 Aug 2021
Known Operator Learning and Hybrid Machine Learning in Medical Imaging -- A Review of the Past, the Present, and the Future
Andreas K. Maier
Harald Kostler
M. Heisig
P. Krauss
S. Yang
MedIm
31
29
0
10 Aug 2021
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GAN
MedIm
29
34
0
22 Jul 2021
Inverse Problem of Nonlinear Schrödinger Equation as Learning of Convolutional Neural Network
Yiran Wang
Zhen Li
18
2
0
19 Jul 2021
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
E. De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
25
30
0
11 Jun 2021
End-to-end reconstruction meets data-driven regularization for inverse problems
Subhadip Mukherjee
M. Carioni
Ozan Oktem
Carola-Bibiane Schönlieb
23
38
0
07 Jun 2021
Compressed Sensing for Photoacoustic Computed Tomography Using an Untrained Neural Network
Hengrong Lan
Juze Zhang
Changchun Yang
Fei Gao
15
1
0
29 May 2021
TNet: A Model-Constrained Tikhonov Network Approach for Inverse Problems
Hai V. Nguyen
T. Bui-Thanh
PINN
AI4CE
16
9
0
25 May 2021
Learning Regularization Parameters of Inverse Problems via Deep Neural Networks
B. Afkham
Julianne Chung
Matthias Chung
17
42
0
14 Apr 2021
OGGN: A Novel Generalized Oracle Guided Generative Architecture for Modelling Inverse Function of Artificial Neural Networks
Mohammad Aaftab
Mansi Sharma
30
1
0
08 Apr 2021
Adversarially learned iterative reconstruction for imaging inverse problems
Subhadip Mukherjee
Ozan Oktem
Carola-Bibiane Schönlieb
SSL
39
7
0
30 Mar 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
40
225
0
23 Mar 2021
Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks: Theory, Methods, and Algorithms
M. Holden
Marcelo Pereyra
K. Zygalakis
MedIm
14
27
0
18 Mar 2021
Edge Sparse Basis Network: A Deep Learning Framework for EEG Source Localization
Chen Wei
Kexin Lou
Zhengyang Wang
Mingqi Zhao
D. Mantini
Quanying Liu
37
21
0
18 Feb 2021
Plug-and-Play gradient-based denoisers applied to CT image enhancement
Pasquale Cascarano
E. L. Piccolomini
E. Morotti
Andrea Sebastiani
22
0
0
15 Feb 2021
AS-Net: Fast Photoacoustic Reconstruction with Multi-feature Fusion from Sparse Data
Mengjie Guo
Hengrong Lan
C. Yang
Fei Gao
19
32
0
22 Jan 2021
Convex Regularization Behind Neural Reconstruction
Arda Sahiner
Morteza Mardani
Batu Mehmet Ozturkler
Mert Pilanci
John M. Pauly
32
25
0
09 Dec 2020
Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data
Hao Xu
Dongxiao Zhang
Nanzhe Wang
19
33
0
24 Nov 2020
Shared Prior Learning of Energy-Based Models for Image Reconstruction
Thomas Pinetz
Erich Kobler
T. Pock
Alexander Effland
DiffM
19
4
0
12 Nov 2020
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
Martin Genzel
Jan Macdonald
M. März
AAML
OOD
24
101
0
09 Nov 2020
Deep learning for biomedical photoacoustic imaging: A review
J. Gröhl
Melanie Schellenberg
Kris K. Dreher
Lena Maier-Hein
35
191
0
05 Nov 2020
Towards Reflectivity profile inversion through Artificial Neural Networks
J. M. Carmona Loaiza
Zamaan Raza
13
11
0
15 Oct 2020
Deep Learning in Photoacoustic Tomography: Current approaches and future directions
A. Hauptmann
B. Cox
36
130
0
16 Sep 2020
Learned convex regularizers for inverse problems
Subhadip Mukherjee
Sören Dittmer
Zakhar Shumaylov
Sebastian Lunz
Ozan Oktem
Carola-Bibiane Schönlieb
27
79
0
06 Aug 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
56
23
0
22 Jul 2020
Total Deep Variation: A Stable Regularizer for Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
T. Pock
MedIm
19
19
0
15 Jun 2020
Regularization of Inverse Problems by Neural Networks
Markus Haltmeier
Linh V. Nguyen
30
18
0
06 Jun 2020
On Learned Operator Correction in Inverse Problems
Sebastian Lunz
A. Hauptmann
T. Tarvainen
Carola-Bibiane Schönlieb
Simon Arridge
6
4
0
14 May 2020
Sparse aNETT for Solving Inverse Problems with Deep Learning
D. Obmann
Linh V. Nguyen
Johannes Schwab
Markus Haltmeier
9
7
0
20 Apr 2020
Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods
Daniel Otero Baguer
Johannes Leuschner
Maximilian Schmidt
29
186
0
10 Mar 2020
Deep synthesis regularization of inverse problems
D. Obmann
Johannes Schwab
Markus Haltmeier
13
11
0
01 Feb 2020
DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm
Hao Xu
Haibin Chang
Dongxiao Zhang
AI4CE
25
87
0
21 Jan 2020
Total Deep Variation for Linear Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
T. Pock
9
89
0
14 Jan 2020
Solving inverse-PDE problems with physics-aware neural networks
Samira Pakravan
Pouria A. Mistani
M. Aragon-Calvo
Frédéric Gibou
AI4CE
12
50
0
10 Jan 2020
Deep learning architectures for nonlinear operator functions and nonlinear inverse problems
Maarten V. de Hoop
Matti Lassas
C. Wong
19
25
0
23 Dec 2019
Learned SVD: solving inverse problems via hybrid autoencoding
Y. Boink
Christoph Brune
18
13
0
20 Dec 2019
Neural Networks-based Regularization for Large-Scale Medical Image Reconstruction
A. Kofler
Markus Haltmeier
T. Schaeffter
M. Kachelriess
M. Dewey
Christian Wald
C. Kolbitsch
21
1
0
19 Dec 2019
Solving Bayesian Inverse Problems via Variational Autoencoders
Hwan Goh
Sheroze Sheriffdeen
J. Wittmer
T. Bui-Thanh
BDL
16
38
0
05 Dec 2019
The LoDoPaB-CT Dataset: A Benchmark Dataset for Low-Dose CT Reconstruction Methods
Johannes Leuschner
Maximilian Schmidt
Daniel Otero Baguer
Peter Maass
22
32
0
01 Oct 2019
Augmented NETT Regularization of Inverse Problems
D. Obmann
Linh V. Nguyen
Johannes Schwab
Markus Haltmeier
16
3
0
08 Aug 2019
Multi-Scale Learned Iterative Reconstruction
A. Hauptmann
J. Adler
Simon Arridge
Ozan Oktem
33
37
0
01 Aug 2019
DeepFlow: History Matching in the Space of Deep Generative Models
L. Mosser
O. Dubrule
M. Blunt
32
13
0
14 May 2019
Unsupervised Deep Learning Algorithm for PDE-based Forward and Inverse Problems
Leah Bar
N. Sochen
6
70
0
10 Apr 2019
An overview of deep learning in medical imaging focusing on MRI
A. Lundervold
A. Lundervold
OOD
6
1,605
0
25 Nov 2018
Random mesh projectors for inverse problems
Sidharth Gupta
K. Kothari
Maarten V. de Hoop
Ivan Dokmanić
29
15
0
29 May 2018
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
187
599
0
22 Sep 2016
Previous
1
2