ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.00092
  4. Cited By
NETT: Solving Inverse Problems with Deep Neural Networks

NETT: Solving Inverse Problems with Deep Neural Networks

28 February 2018
Housen Li
Johannes Schwab
Stephan Antholzer
Markus Haltmeier
ArXivPDFHTML

Papers citing "NETT: Solving Inverse Problems with Deep Neural Networks"

50 / 100 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
B. Peters
Michael Solomon
31
0
0
10 May 2025
Enhanced uncertainty quantification variational autoencoders for the solution of Bayesian inverse problems
Enhanced uncertainty quantification variational autoencoders for the solution of Bayesian inverse problems
Andrea Tonini
Luca Dede'
UQCV
BDL
89
0
0
18 Feb 2025
Deep Guess acceleration for explainable image reconstruction in
  sparse-view CT
Deep Guess acceleration for explainable image reconstruction in sparse-view CT
E. L. Piccolomini
Davide Evangelista
E. Morotti
OOD
72
1
0
02 Dec 2024
A Primal-dual algorithm for image reconstruction with ICNNs
A Primal-dual algorithm for image reconstruction with ICNNs
Hok Shing Wong
Matthias Joachim Ehrhardt
Subhadip Mukherjee
26
1
0
16 Oct 2024
Differentiable programming across the PDE and Machine Learning barrier
Differentiable programming across the PDE and Machine Learning barrier
N. Bouziani
David A. Ham
Ado Farsi
PINN
AI4CE
32
1
0
09 Sep 2024
Iterative CT Reconstruction via Latent Variable Optimization of Shallow
  Diffusion Models
Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models
S. Ozaki
S. Kaji
T. Imae
K. Nawa
H. Yamashita
K. Nakagawa
DiffM
MedIm
32
0
0
06 Aug 2024
LIP-CAR: contrast agent reduction by a deep learned inverse problem
LIP-CAR: contrast agent reduction by a deep learned inverse problem
Davide Bianchi
Sonia Colombo Serra
Davide Evangelista
Pengpeng Luo
E. Morotti
Giovanni Valbusa
MedIm
22
0
0
15 Jul 2024
Iteratively Refined Image Reconstruction with Learned Attentive
  Regularizers
Iteratively Refined Image Reconstruction with Learned Attentive Regularizers
Mehrsa Pourya
Sebastian Neumayer
Michael Unser
38
0
0
09 Jul 2024
Blind Inversion using Latent Diffusion Priors
Blind Inversion using Latent Diffusion Priors
Weimin Bai
Siyi Chen
Wenzheng Chen
He Sun
DiffM
26
4
0
01 Jul 2024
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Sebastian Neumayer
Fabian Altekrüger
34
1
0
18 Jun 2024
FMint: Bridging Human Designed and Data Pretrained Models for
  Differential Equation Foundation Model
FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model
Zezheng Song
Jiaxin Yuan
Haizhao Yang
AI4CE
38
16
0
23 Apr 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
67
1
0
08 Apr 2024
Robustness and Exploration of Variational and Machine Learning
  Approaches to Inverse Problems: An Overview
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
29
0
0
19 Feb 2024
Weakly Convex Regularisers for Inverse Problems: Convergence of Critical
  Points and Primal-Dual Optimisation
Weakly Convex Regularisers for Inverse Problems: Convergence of Critical Points and Primal-Dual Optimisation
Zakhar Shumaylov
Jeremy Budd
Subhadip Mukherjee
Carola-Bibiane Schönlieb
21
6
0
01 Feb 2024
Learned reconstruction methods for inverse problems: sample error
  estimates
Learned reconstruction methods for inverse problems: sample error estimates
Luca Ratti
24
0
0
21 Dec 2023
Learned Regularization for Inverse Problems: Insights from a Spectral
  Model
Learned Regularization for Inverse Problems: Insights from a Spectral Model
Martin Burger
Samira Kabri
25
0
0
15 Dec 2023
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Provably Convergent Data-Driven Convex-Nonconvex Regularization
Provably Convergent Data-Driven Convex-Nonconvex Regularization
Zakhar Shumaylov
Jeremy Budd
Subhadip Mukherjee
Carola-Bibiane Schönlieb
30
5
0
09 Oct 2023
Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models
Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models
Marien Renaud
Jiaming Liu
Valentin De Bortoli
Andrés Almansa
Ulugbek S. Kamilov
48
5
0
05 Oct 2023
Solving Low-Dose CT Reconstruction via GAN with Local Coherence
Solving Low-Dose CT Reconstruction via GAN with Local Coherence
Wenjie Liu
MedIm
11
2
0
24 Sep 2023
Convergence and Recovery Guarantees of Unsupervised Neural Networks for
  Inverse Problems
Convergence and Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems
Nathan Buskulic
M. Fadili
Yvain Quéau
11
4
0
21 Sep 2023
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction
  Algorithms
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms
Alexis Goujon
Sebastian Neumayer
M. Unser
41
23
0
21 Aug 2023
InVAErt networks: a data-driven framework for model synthesis and
  identifiability analysis
InVAErt networks: a data-driven framework for model synthesis and identifiability analysis
Guoxiang Grayson Tong
Carlos A. Sing Long
Daniele E. Schiavazzi
23
7
0
24 Jul 2023
Convergent regularization in inverse problems and linear plug-and-play
  denoisers
Convergent regularization in inverse problems and linear plug-and-play denoisers
A. Hauptmann
Subhadip Mukherjee
Carola-Bibiane Schönlieb
Ferdia Sherry
21
13
0
18 Jul 2023
Learning to reconstruct the bubble distribution with conductivity maps
  using Invertible Neural Networks and Error Diffusion
Learning to reconstruct the bubble distribution with conductivity maps using Invertible Neural Networks and Error Diffusion
Nishant Kumar
L. Krause
T. Wondrak
S. Eckert
Kerstin Eckert
Stefan Gumhold
10
2
0
04 Jul 2023
Neural network analysis of neutron and X-ray reflectivity data:
  Incorporating prior knowledge for tackling the phase problem
Neural network analysis of neutron and X-ray reflectivity data: Incorporating prior knowledge for tackling the phase problem
Valentin Munteanu
V. Starostin
Alessandro Greco
L. Pithan
A. Gerlach
A. Hinderhofer
S. Kowarik
F. Schreiber
14
3
0
28 Jun 2023
Globally injective and bijective neural operators
Globally injective and bijective neural operators
Takashi Furuya
Michael Puthawala
Matti Lassas
Maarten V. de Hoop
25
11
0
06 Jun 2023
Convergence analysis of equilibrium methods for inverse problems
Convergence analysis of equilibrium methods for inverse problems
D. Obmann
Markus Haltmeier
21
5
0
02 Jun 2023
A Direct Sampling-Based Deep Learning Approach for Inverse Medium
  Scattering Problems
A Direct Sampling-Based Deep Learning Approach for Inverse Medium Scattering Problems
Jianfeng Ning
Fuqun Han
Jun Zou
26
11
0
29 Apr 2023
Goal-oriented Uncertainty Quantification for Inverse Problems via
  Variational Encoder-Decoder Networks
Goal-oriented Uncertainty Quantification for Inverse Problems via Variational Encoder-Decoder Networks
B. Afkham
Julianne Chung
Matthias Chung
24
1
0
17 Apr 2023
Uncertainty-Aware Null Space Networks for Data-Consistent Image
  Reconstruction
Uncertainty-Aware Null Space Networks for Data-Consistent Image Reconstruction
Christoph Angermann
Simon Göppel
Markus Haltmeier
28
2
0
14 Apr 2023
Model-corrected learned primal-dual models for fast limited-view
  photoacoustic tomography
Model-corrected learned primal-dual models for fast limited-view photoacoustic tomography
A. Hauptmann
Jenni Poimala
MedIm
31
5
0
04 Apr 2023
Retrospective Motion Correction in Gradient Echo MRI by Explicit Motion
  Estimation Using Deep CNNs
Retrospective Motion Correction in Gradient Echo MRI by Explicit Motion Estimation Using Deep CNNs
M. S. Feinler
B. Hahn
MedIm
10
5
0
30 Mar 2023
A Lifted Bregman Formulation for the Inversion of Deep Neural Networks
A Lifted Bregman Formulation for the Inversion of Deep Neural Networks
Xiaoyu Wang
Martin Benning
28
2
0
01 Mar 2023
Learned Interferometric Imaging for the SPIDER Instrument
Learned Interferometric Imaging for the SPIDER Instrument
Matthijs Mars
M. Betcke
Jason D. McEwen
14
3
0
24 Jan 2023
Cross-domain Self-supervised Framework for Photoacoustic Computed
  Tomography Image Reconstruction
Cross-domain Self-supervised Framework for Photoacoustic Computed Tomography Image Reconstruction
Hengrong Lan
Lijie Huang
Zhiqiang Li
Jing Lv
Jianwen Luo
ViT
OOD
24
1
0
17 Jan 2023
Convergent Data-driven Regularizations for CT Reconstruction
Convergent Data-driven Regularizations for CT Reconstruction
Samira Kabri
Alexander Auras
D. Riccio
Hartmut Bauermeister
Martin Benning
Michael Moeller
Martin Burger
22
12
0
14 Dec 2022
Application of machine learning regression models to inverse eigenvalue
  problems
Application of machine learning regression models to inverse eigenvalue problems
Nikolaos Pallikarakis
Andreas Ntargaras
11
8
0
08 Dec 2022
Deep Learning Methods for Partial Differential Equations and Related
  Parameter Identification Problems
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
18
34
0
06 Dec 2022
Estimation of fibre architecture and scar in myocardial tissue using
  electrograms: an in-silico study
Estimation of fibre architecture and scar in myocardial tissue using electrograms: an in-silico study
Konstantinos Ntagiantas
E. Pignatelli
N. Peters
C. Cantwell
R. Chowdhury
Anil A. Bharath
13
1
0
06 Dec 2022
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
AI4CE
24
63
0
30 Nov 2022
Deep unfolding as iterative regularization for imaging inverse problems
Deep unfolding as iterative regularization for imaging inverse problems
Zhuoxu Cui
Qingyong Zhu
Jing Cheng
Dong Liang
32
5
0
24 Nov 2022
A Neural-Network-Based Convex Regularizer for Inverse Problems
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
11
26
0
22 Nov 2022
Limitations of neural network training due to numerical instability of
  backpropagation
Limitations of neural network training due to numerical instability of backpropagation
Clemens Karner
V. Kazeev
P. Petersen
32
3
0
03 Oct 2022
Statistical Learning and Inverse Problems: A Stochastic Gradient
  Approach
Statistical Learning and Inverse Problems: A Stochastic Gradient Approach
Yuri S. Fonseca
Yuri F. Saporito
35
4
0
29 Sep 2022
Deep Preconditioners and their application to seismic wavefield
  processing
Deep Preconditioners and their application to seismic wavefield processing
M. Ravasi
31
2
0
20 Jul 2022
Learned reconstruction methods with convergence guarantees
Learned reconstruction methods with convergence guarantees
Subhadip Mukherjee
A. Hauptmann
Ozan Oktem
Marcelo Pereyra
Carola-Bibiane Schönlieb
22
49
0
11 Jun 2022
Can We Use Neural Regularization to Solve Depth Super-Resolution?
Can We Use Neural Regularization to Solve Depth Super-Resolution?
Milena Gazdieva
Oleg Voynov
Alexey Artemov
Youyi Zheng
Luiz Velho
Evgeny Burnaev
SupR
MDE
14
0
0
21 Dec 2021
Automatic differentiation approach for reconstructing spectral functions
  with neural networks
Automatic differentiation approach for reconstructing spectral functions with neural networks
Lingxiao Wang
S. Shi
Kai Zhou
14
7
0
12 Dec 2021
Reconstructing spectral functions via automatic differentiation
Reconstructing spectral functions via automatic differentiation
Lingxiao Wang
S. Shi
Kai Zhou
14
23
0
29 Nov 2021
12
Next