ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09987
  4. Cited By
Multi-View Silhouette and Depth Decomposition for High Resolution 3D
  Object Representation

Multi-View Silhouette and Depth Decomposition for High Resolution 3D Object Representation

27 February 2018
Edward James Smith
Scott Fujimoto
David Meger
    SupR
ArXivPDFHTML

Papers citing "Multi-View Silhouette and Depth Decomposition for High Resolution 3D Object Representation"

13 / 13 papers shown
Title
Machine Learning for Detection of 3D Features using sparse X-ray data
Machine Learning for Detection of 3D Features using sparse X-ray data
B. Wolfe
Michael J. Falato
Xinhua Zhang
Nga Nguyen-Fotiadis
J. Sauppe
P. Kozlowski
P. Keiter
R. Reinovsky
S. Batha
Zhehui Wang
18
10
0
02 Jun 2022
Active 3D Shape Reconstruction from Vision and Touch
Active 3D Shape Reconstruction from Vision and Touch
Edward James Smith
David Meger
Luis Villaseñor-Pineda
Roberto Calandra
Jitendra Malik
Adriana Romero
M. Drozdzal
13
45
0
20 Jul 2021
GAMesh: Guided and Augmented Meshing for Deep Point Networks
GAMesh: Guided and Augmented Meshing for Deep Point Networks
Nitin Agarwal
M. Gopi
3DPC
3DGS
168
4
0
19 Oct 2020
Amodal 3D Reconstruction for Robotic Manipulation via Stability and
  Connectivity
Amodal 3D Reconstruction for Robotic Manipulation via Stability and Connectivity
William Agnew
Christopher Xie
Aaron Walsman
Octavian Murad
Caelen Wang
Pedro M. Domingos
S. Srinivasa
29
18
0
28 Sep 2020
3D Shape Reconstruction from Vision and Touch
3D Shape Reconstruction from Vision and Touch
Edward James Smith
Roberto Calandra
Adriana Romero
Georgia Gkioxari
David Meger
Jitendra Malik
M. Drozdzal
16
71
0
07 Jul 2020
Implicit Functions in Feature Space for 3D Shape Reconstruction and
  Completion
Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
Julian Chibane
Thiemo Alldieck
Gerard Pons-Moll
3DPC
55
492
0
03 Mar 2020
Point Cloud Super Resolution with Adversarial Residual Graph Networks
Point Cloud Super Resolution with Adversarial Residual Graph Networks
Huikai Wu
Junge Zhang
Kaiqi Huang
3DPC
22
47
0
06 Aug 2019
A Deep Journey into Super-resolution: A survey
A Deep Journey into Super-resolution: A survey
Saeed Anwar
Salman Khan
Nick Barnes
SupR
21
406
0
16 Apr 2019
3D Scene Reconstruction with Multi-layer Depth and Epipolar Transformers
3D Scene Reconstruction with Multi-layer Depth and Epipolar Transformers
Daeyun Shin
Zhile Ren
Erik B. Sudderth
Charless C. Fowlkes
3DV
30
14
0
18 Feb 2019
Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View
  Mesh Reconstruction
Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction
Shichen Liu
Weikai Chen
Tianye Li
Hao Li
25
96
0
17 Jan 2019
Occupancy Networks: Learning 3D Reconstruction in Function Space
Occupancy Networks: Learning 3D Reconstruction in Function Space
L. Mescheder
Michael Oechsle
Michael Niemeyer
Sebastian Nowozin
Andreas Geiger
3DV
78
2,864
0
10 Dec 2018
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
191
1,942
0
24 Oct 2016
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
234
5,181
0
16 Sep 2016
1