ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09308
  4. Cited By
Max-Mahalanobis Linear Discriminant Analysis Networks

Max-Mahalanobis Linear Discriminant Analysis Networks

26 February 2018
Tianyu Pang
Chao Du
Jun Zhu
ArXivPDFHTML

Papers citing "Max-Mahalanobis Linear Discriminant Analysis Networks"

13 / 13 papers shown
Title
It Is All About Data: A Survey on the Effects of Data on Adversarial
  Robustness
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
37
8
0
17 Mar 2023
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
40
120
0
21 Feb 2022
Improving the Transferability of Adversarial Examples with
  Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting
Junhua Zou
Zhisong Pan
Junyang Qiu
Xin Liu
Ting Rui
Wei Li
23
67
0
11 Dec 2021
Introducing the DOME Activation Functions
Introducing the DOME Activation Functions
Mohamed E. Hussein
Wael AbdAlmageed
30
1
0
30 Sep 2021
Improving Adversarial Robustness via Probabilistically Compact Loss with
  Logit Constraints
Improving Adversarial Robustness via Probabilistically Compact Loss with Logit Constraints
X. Li
Xiangrui Li
Deng Pan
D. Zhu
AAML
21
17
0
14 Dec 2020
NullSpaceNet: Nullspace Convoluional Neural Network with Differentiable
  Loss Function
NullSpaceNet: Nullspace Convoluional Neural Network with Differentiable Loss Function
Mohamed H. Abdelpakey
M. Shehata
3DPC
21
1
0
25 Apr 2020
On Adaptive Attacks to Adversarial Example Defenses
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
109
823
0
19 Feb 2020
Deep Neural Rejection against Adversarial Examples
Deep Neural Rejection against Adversarial Examples
Angelo Sotgiu
Ambra Demontis
Marco Melis
Battista Biggio
Giorgio Fumera
Xiaoyi Feng
Fabio Roli
AAML
22
68
0
01 Oct 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
28
103
0
25 Sep 2019
Evading Defenses to Transferable Adversarial Examples by
  Translation-Invariant Attacks
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
49
830
0
05 Apr 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
41
434
0
25 Jan 2019
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
309
3,115
0
04 Nov 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
353
5,849
0
08 Jul 2016
1