Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.09081
Cited By
Temporal Difference Models: Model-Free Deep RL for Model-Based Control
25 February 2018
Vitchyr H. Pong
S. Gu
Murtaza Dalal
Sergey Levine
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Temporal Difference Models: Model-Free Deep RL for Model-Based Control"
21 / 21 papers shown
Title
Online Reinforcement Learning in Non-Stationary Context-Driven Environments
Pouya Hamadanian
Arash Nasr-Esfahany
Malte Schwarzkopf
Siddartha Sen
MohammadIman Alizadeh
CLL
OffRL
92
0
0
04 Feb 2023
Overcoming Model Bias for Robust Offline Deep Reinforcement Learning
Phillip Swazinna
Steffen Udluft
Thomas Runkler
OffRL
50
83
0
12 Aug 2020
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
Anusha Nagabandi
G. Kahn
R. Fearing
Sergey Levine
81
967
0
08 Aug 2017
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
82
1,497
0
21 Jul 2017
Hindsight Experience Replay
Marcin Andrychowicz
Dwight Crow
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
OffRL
233
2,307
0
05 Jul 2017
Discrete Sequential Prediction of Continuous Actions for Deep RL
Luke Metz
Julian Ibarz
Navdeep Jaitly
James Davidson
BDL
OffRL
62
118
0
14 May 2017
Goal-Driven Dynamics Learning via Bayesian Optimization
Somil Bansal
Roberto Calandra
Ted Xiao
Sergey Levine
Claire Tomlin
42
113
0
27 Mar 2017
Prediction and Control with Temporal Segment Models
Nikhil Mishra
Pieter Abbeel
Igor Mordatch
BDL
49
64
0
12 Mar 2017
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning
Yevgen Chebotar
Karol Hausman
Marvin Zhang
Gaurav Sukhatme
S. Schaal
Sergey Levine
63
160
0
08 Mar 2017
The Predictron: End-To-End Learning and Planning
David Silver
H. V. Hasselt
Matteo Hessel
Tom Schaul
A. Guez
...
Gabriel Dulac-Arnold
David P. Reichert
Neil C. Rabinowitz
André Barreto
T. Degris
52
289
0
28 Dec 2016
Reinforcement Learning with Unsupervised Auxiliary Tasks
Max Jaderberg
Volodymyr Mnih
Wojciech M. Czarnecki
Tom Schaul
Joel Z Leibo
David Silver
Koray Kavukcuoglu
SSL
59
1,225
0
16 Nov 2016
Learning to Act by Predicting the Future
Alexey Dosovitskiy
V. Koltun
132
280
0
06 Nov 2016
Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates
S. Gu
E. Holly
Timothy Lillicrap
Sergey Levine
OffRL
SSL
109
1,477
0
03 Oct 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
76
1,689
0
22 Apr 2016
Continuous Deep Q-Learning with Model-based Acceleration
S. Gu
Timothy Lillicrap
Ilya Sutskever
Sergey Levine
69
1,010
0
02 Mar 2016
Learning Continuous Control Policies by Stochastic Value Gradients
N. Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
95
560
0
30 Oct 2015
Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search
Tianhao Zhang
G. Kahn
Sergey Levine
Pieter Abbeel
65
427
0
22 Sep 2015
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
240
13,174
0
09 Sep 2015
End-to-End Training of Deep Visuomotor Policies
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
BDL
249
3,418
0
02 Apr 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
Learning Parameterized Skills
Bruno C. da Silva
George Konidaris
A. Barto
103
207
0
27 Jun 2012
1