Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.08686
Cited By
Adversarial vulnerability for any classifier
23 February 2018
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial vulnerability for any classifier"
50 / 55 papers shown
Title
Adversarial Detection with a Dynamically Stable System
Xiaowei Long
Jie Lin
Xiangyuan Yang
AAML
41
0
0
11 Nov 2024
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
42
0
0
26 Jun 2024
On The Relationship Between Universal Adversarial Attacks And Sparse Representations
Dana Weitzner
Raja Giryes
AAML
29
0
0
14 Nov 2023
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
Rene Vidal
26
8
0
28 Sep 2023
Exploiting Frequency Spectrum of Adversarial Images for General Robustness
Chun Yang Tan
K. Kawamoto
Hiroshi Kera
AAML
OOD
31
1
0
15 May 2023
When are Local Queries Useful for Robust Learning?
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
OOD
35
1
0
12 Oct 2022
Defense Against Multi-target Trojan Attacks
Haripriya Harikumar
Santu Rana
Kien Do
Sunil R. Gupta
W. Zong
Willy Susilo
Svetha Venkatesh
AAML
13
3
0
08 Jul 2022
Sample Complexity Bounds for Robustly Learning Decision Lists against Evasion Attacks
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
AAML
13
5
0
12 May 2022
A Manifold View of Adversarial Risk
Wen-jun Zhang
Yikai Zhang
Xiaoling Hu
Mayank Goswami
Chao Chen
Dimitris N. Metaxas
AAML
19
6
0
24 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
25
3
0
05 Feb 2022
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
Image classifiers can not be made robust to small perturbations
Zheng Dai
David K Gifford
VLM
AAML
24
1
0
07 Dec 2021
On some theoretical limitations of Generative Adversarial Networks
Benoit Oriol
Alexandre Miot
GAN
11
4
0
21 Oct 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
355
0
04 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
On the regularized risk of distributionally robust learning over deep neural networks
Camilo A. Garcia Trillos
Nicolas García Trillos
OOD
45
10
0
13 Sep 2021
The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
Alexander Bastounis
A. Hansen
Verner Vlacic
AAML
OOD
32
28
0
13 Sep 2021
Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack
Mengting Xu
Tao Zhang
Zhongnian Li
Mingxia Liu
Daoqiang Zhang
AAML
OOD
MedIm
30
41
0
05 Mar 2021
"What's in the box?!": Deflecting Adversarial Attacks by Randomly Deploying Adversarially-Disjoint Models
Sahar Abdelnabi
Mario Fritz
AAML
27
7
0
09 Feb 2021
Achieving Adversarial Robustness Requires An Active Teacher
Chao Ma
Lexing Ying
27
1
0
14 Dec 2020
Regularization with Latent Space Virtual Adversarial Training
Genki Osada
Budrul Ahsan
Revoti Prasad Bora
Takashi Nishide
30
14
0
26 Nov 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation
Wenhao Ding
Baiming Chen
Bo-wen Li
Kim Ji Eun
Ding Zhao
AAML
16
99
0
16 Sep 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
155
0
08 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
Derivation of Information-Theoretically Optimal Adversarial Attacks with Applications to Robust Machine Learning
Jirong Yi
R. Mudumbai
Weiyu Xu
AAML
22
2
0
28 Jul 2020
RANDOM MASK: Towards Robust Convolutional Neural Networks
Tiange Luo
Tianle Cai
Mengxiao Zhang
Siyu Chen
Liwei Wang
AAML
OOD
19
17
0
27 Jul 2020
Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity
Nam Ho-Nguyen
Stephen J. Wright
OOD
42
16
0
28 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
35
147
0
20 May 2020
Certifying Joint Adversarial Robustness for Model Ensembles
M. Jonas
David E. Evans
AAML
21
2
0
21 Apr 2020
Utilizing Network Properties to Detect Erroneous Inputs
Matt Gorbett
Nathaniel Blanchard
AAML
21
6
0
28 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
32
64
0
11 Feb 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
38
77
0
11 Feb 2020
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
19
34
0
05 Feb 2020
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
25
19
0
25 Nov 2019
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
26
68
0
06 Nov 2019
Towards Robust and Stable Deep Learning Algorithms for Forward Backward Stochastic Differential Equations
Batuhan Güler
Alexis Laignelet
P. Parpas
OOD
21
16
0
25 Oct 2019
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
134
103
0
17 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
28
103
0
25 Sep 2019
Universal Adversarial Audio Perturbations
Sajjad Abdoli
L. G. Hafemann
Jérôme Rony
Ismail Ben Ayed
P. Cardinal
Alessandro Lameiras Koerich
AAML
25
51
0
08 Aug 2019
Using learned optimizers to make models robust to input noise
Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Narain Sohl-Dickstein
E. D. Cubuk
VLM
OOD
15
26
0
08 Jun 2019
Adversarially Robust Learning Could Leverage Computational Hardness
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
AAML
16
24
0
28 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
28
374
0
30 Apr 2019
The Odds are Odd: A Statistical Test for Detecting Adversarial Examples
Kevin Roth
Yannic Kilcher
Thomas Hofmann
AAML
27
175
0
13 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
24
318
0
29 Jan 2019
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
Tsui-Wei Weng
Pin-Yu Chen
Lam M. Nguyen
M. Squillante
Ivan V. Oseledets
Luca Daniel
AAML
13
30
0
18 Dec 2018
1
2
Next