ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08219
  4. Cited By
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds

22 February 2018
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
    3DPC
ArXivPDFHTML

Papers citing "Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds"

50 / 251 papers shown
Title
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
79
185
0
19 Apr 2021
Field Convolutions for Surface CNNs
Field Convolutions for Surface CNNs
Thomas W. Mitchel
Vladimir G. Kim
Michael Kazhdan
26
19
0
08 Apr 2021
Equivariant Point Network for 3D Point Cloud Analysis
Equivariant Point Network for 3D Point Cloud Analysis
Haiwei Chen
Shichen Liu
Weikai Chen
Hao Li
3DPC
19
99
0
25 Mar 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
30
979
0
19 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
230
1,240
0
08 Jan 2021
LieTransformer: Equivariant self-attention for Lie Groups
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
26
111
0
20 Dec 2020
Molecular machine learning with conformer ensembles
Molecular machine learning with conformer ensembles
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
20
49
0
15 Dec 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
29
64
0
25 Nov 2020
Deep Positional and Relational Feature Learning for Rotation-Invariant
  Point Cloud Analysis
Deep Positional and Relational Feature Learning for Rotation-Invariant Point Cloud Analysis
Ruixuan Yu
Xin Wei
Federico Tombari
Jian Sun
3DPC
27
37
0
18 Nov 2020
Spherical convolutions on molecular graphs for protein model quality
  assessment
Spherical convolutions on molecular graphs for protein model quality assessment
Ilia Igashov
Nikita Pavlichenko
Sergei Grudinin
24
14
0
16 Nov 2020
Machine learning of solvent effects on molecular spectra and reactions
Machine learning of solvent effects on molecular spectra and reactions
M. Gastegger
Kristof T. Schütt
Klaus-Robert Muller
AI4CE
17
59
0
28 Oct 2020
Trajectory Prediction using Equivariant Continuous Convolution
Trajectory Prediction using Equivariant Continuous Convolution
Robin Walters
Jinxi Li
Rose Yu
26
43
0
21 Oct 2020
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
35
53
0
21 Oct 2020
Probabilistic Numeric Convolutional Neural Networks
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
29
13
0
21 Oct 2020
On the Universality of Rotation Equivariant Point Cloud Networks
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
35
78
0
06 Oct 2020
RISA-Net: Rotation-Invariant Structure-Aware Network for Fine-Grained 3D
  Shape Retrieval
RISA-Net: Rotation-Invariant Structure-Aware Network for Fine-Grained 3D Shape Retrieval
Rao Fu
Jie Yang
Jiawei Sun
Fang-Lue Zhang
Yu-Kun Lai
Lin Gao
3DV
3DPC
3DH
34
2
0
02 Oct 2020
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule
  Properties
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
Zeren Shui
George Karypis
29
62
0
26 Sep 2020
Kohn-Sham equations as regularizer: building prior knowledge into
  machine-learned physics
Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
Li Li
Stephan Hoyer
Ryan Pederson
Ruoxi Sun
E. D. Cubuk
Patrick F. Riley
K. Burke
AI4CE
35
120
0
17 Sep 2020
Learning from Protein Structure with Geometric Vector Perceptrons
Learning from Protein Structure with Geometric Vector Perceptrons
Bowen Jing
Stephan Eismann
Patricia Suriana
Raphael J. L. Townshend
R. Dror
GNN
3DV
25
471
0
03 Sep 2020
Relevance of Rotationally Equivariant Convolutions for Predicting
  Molecular Properties
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
16
75
0
19 Aug 2020
Spin-Weighted Spherical CNNs
Spin-Weighted Spherical CNNs
Carlos Esteves
A. Makadia
Kostas Daniilidis
30
69
0
18 Jun 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
45
666
0
18 Jun 2020
Lorentz Group Equivariant Neural Network for Particle Physics
Lorentz Group Equivariant Neural Network for Particle Physics
A. Bogatskiy
Brandon M. Anderson
Jan T. Offermann
M. Roussi
David W. Miller
Risi Kondor
AI4CE
29
136
0
08 Jun 2020
Info3D: Representation Learning on 3D Objects using Mutual Information
  Maximization and Contrastive Learning
Info3D: Representation Learning on 3D Objects using Mutual Information Maximization and Contrastive Learning
Aditya Sanghi
3DPC
SSL
11
101
0
04 Jun 2020
CNNs on Surfaces using Rotation-Equivariant Features
CNNs on Surfaces using Rotation-Equivariant Features
R. Wiersma
E. Eisemann
Klaus Hildebrandt
28
69
0
02 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
  Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
A deep neural network for molecular wave functions in quasi-atomic
  minimal basis representation
A deep neural network for molecular wave functions in quasi-atomic minimal basis representation
M. Gastegger
A. McSloy
M. Luya
Kristof T. Schütt
R. Maurer
13
46
0
11 May 2020
Theoretical Aspects of Group Equivariant Neural Networks
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
24
41
0
10 Apr 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
102
127
0
11 Mar 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
54
848
0
06 Mar 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie
  Groups on Arbitrary Continuous Data
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
28
316
0
25 Feb 2020
Roto-Translation Equivariant Convolutional Networks: Application to
  Histopathology Image Analysis
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Maxime W. Lafarge
Erik J. Bekkers
J. Pluim
R. Duits
M. Veta
MedIm
27
74
0
20 Feb 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
30
132
0
20 Feb 2020
Attentive Group Equivariant Convolutional Networks
Attentive Group Equivariant Convolutional Networks
David W. Romero
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
22
89
0
07 Feb 2020
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Yongheng Zhao
Tolga Birdal
J. E. Lenssen
Emanuele Menegatti
Leonidas J. Guibas
Federico Tombari
3DPC
26
88
0
27 Dec 2019
Geometry Sharing Network for 3D Point Cloud Classification and
  Segmentation
Geometry Sharing Network for 3D Point Cloud Classification and Segmentation
Mingye Xu
Zhipeng Zhou
Yu Qiao
3DPC
21
92
0
23 Dec 2019
Representation Learning on Unit Ball with 3D Roto-Translational
  Equivariance
Representation Learning on Unit Ball with 3D Roto-Translational Equivariance
Sameera Ramasinghe
Salman Khan
Nick Barnes
Stephen Gould
13
8
0
30 Nov 2019
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods
Luca Della Libera
Vladimir Golkov
Yue Zhu
Arman Mielke
Daniel Cremers
3DH
3DPC
25
4
0
31 Oct 2019
B-Spline CNNs on Lie Groups
B-Spline CNNs on Lie Groups
Erik J. Bekkers
AI4CE
29
129
0
26 Sep 2019
Effective Rotation-invariant Point CNN with Spherical Harmonics kernels
Effective Rotation-invariant Point CNN with Spherical Harmonics kernels
A. Poulenard
Marie-Julie Rakotosaona
Yann Ponty
M. Ovsjanikov
3DPC
25
102
0
27 Jun 2019
Unifying machine learning and quantum chemistry -- a deep neural network
  for molecular wavefunctions
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
29
382
0
24 Jun 2019
Cormorant: Covariant Molecular Neural Networks
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
27
421
0
06 Jun 2019
Discrete Rotation Equivariance for Point Cloud Recognition
Discrete Rotation Equivariance for Point Cloud Recognition
Jiaxin Li
Yingcai Bi
Gim Hee Lee
3DPC
27
24
0
31 Mar 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
61
402
0
11 Feb 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their
  Embeddings and Back
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
26
1
0
24 Jan 2019
3DTI-Net: Learn Inner Transform Invariant 3D Geometry Features using
  Dynamic GCN
3DTI-Net: Learn Inner Transform Invariant 3D Geometry Features using Dynamic GCN
G. Pan
Jun Wang
R. Ying
Peilin Liu
3DPC
9
16
0
15 Dec 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
45
494
0
06 Jul 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
42
264
0
24 Jun 2018
Intertwiners between Induced Representations (with Applications to the
  Theory of Equivariant Neural Networks)
Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks)
Taco S. Cohen
Mario Geiger
Maurice Weiler
33
46
0
28 Mar 2018
Previous
123456
Next