Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.08219
Cited By
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
22 February 2018
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds"
50 / 251 papers shown
Title
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
79
185
0
19 Apr 2021
Field Convolutions for Surface CNNs
Thomas W. Mitchel
Vladimir G. Kim
Michael Kazhdan
26
19
0
08 Apr 2021
Equivariant Point Network for 3D Point Cloud Analysis
Haiwei Chen
Shichen Liu
Weikai Chen
Hao Li
3DPC
19
99
0
25 Mar 2021
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
30
979
0
19 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
230
1,240
0
08 Jan 2021
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
26
111
0
20 Dec 2020
Molecular machine learning with conformer ensembles
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
20
49
0
15 Dec 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
29
64
0
25 Nov 2020
Deep Positional and Relational Feature Learning for Rotation-Invariant Point Cloud Analysis
Ruixuan Yu
Xin Wei
Federico Tombari
Jian Sun
3DPC
27
37
0
18 Nov 2020
Spherical convolutions on molecular graphs for protein model quality assessment
Ilia Igashov
Nikita Pavlichenko
Sergei Grudinin
24
14
0
16 Nov 2020
Machine learning of solvent effects on molecular spectra and reactions
M. Gastegger
Kristof T. Schütt
Klaus-Robert Muller
AI4CE
17
59
0
28 Oct 2020
Trajectory Prediction using Equivariant Continuous Convolution
Robin Walters
Jinxi Li
Rose Yu
26
43
0
21 Oct 2020
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
35
53
0
21 Oct 2020
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
29
13
0
21 Oct 2020
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
35
78
0
06 Oct 2020
RISA-Net: Rotation-Invariant Structure-Aware Network for Fine-Grained 3D Shape Retrieval
Rao Fu
Jie Yang
Jiawei Sun
Fang-Lue Zhang
Yu-Kun Lai
Lin Gao
3DV
3DPC
3DH
34
2
0
02 Oct 2020
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
Zeren Shui
George Karypis
29
62
0
26 Sep 2020
Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
Li Li
Stephan Hoyer
Ryan Pederson
Ruoxi Sun
E. D. Cubuk
Patrick F. Riley
K. Burke
AI4CE
35
120
0
17 Sep 2020
Learning from Protein Structure with Geometric Vector Perceptrons
Bowen Jing
Stephan Eismann
Patricia Suriana
Raphael J. L. Townshend
R. Dror
GNN
3DV
25
471
0
03 Sep 2020
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
16
75
0
19 Aug 2020
Spin-Weighted Spherical CNNs
Carlos Esteves
A. Makadia
Kostas Daniilidis
30
69
0
18 Jun 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
45
666
0
18 Jun 2020
Lorentz Group Equivariant Neural Network for Particle Physics
A. Bogatskiy
Brandon M. Anderson
Jan T. Offermann
M. Roussi
David W. Miller
Risi Kondor
AI4CE
29
136
0
08 Jun 2020
Info3D: Representation Learning on 3D Objects using Mutual Information Maximization and Contrastive Learning
Aditya Sanghi
3DPC
SSL
11
101
0
04 Jun 2020
CNNs on Surfaces using Rotation-Equivariant Features
R. Wiersma
E. Eisemann
Klaus Hildebrandt
28
69
0
02 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
A deep neural network for molecular wave functions in quasi-atomic minimal basis representation
M. Gastegger
A. McSloy
M. Luya
Kristof T. Schütt
R. Maurer
13
46
0
11 May 2020
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
24
41
0
10 Apr 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
102
127
0
11 Mar 2020
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
54
848
0
06 Mar 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
28
316
0
25 Feb 2020
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Maxime W. Lafarge
Erik J. Bekkers
J. Pluim
R. Duits
M. Veta
MedIm
27
74
0
20 Feb 2020
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
30
132
0
20 Feb 2020
Attentive Group Equivariant Convolutional Networks
David W. Romero
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
22
89
0
07 Feb 2020
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Yongheng Zhao
Tolga Birdal
J. E. Lenssen
Emanuele Menegatti
Leonidas J. Guibas
Federico Tombari
3DPC
26
88
0
27 Dec 2019
Geometry Sharing Network for 3D Point Cloud Classification and Segmentation
Mingye Xu
Zhipeng Zhou
Yu Qiao
3DPC
21
92
0
23 Dec 2019
Representation Learning on Unit Ball with 3D Roto-Translational Equivariance
Sameera Ramasinghe
Salman Khan
Nick Barnes
Stephen Gould
13
8
0
30 Nov 2019
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods
Luca Della Libera
Vladimir Golkov
Yue Zhu
Arman Mielke
Daniel Cremers
3DH
3DPC
25
4
0
31 Oct 2019
B-Spline CNNs on Lie Groups
Erik J. Bekkers
AI4CE
29
129
0
26 Sep 2019
Effective Rotation-invariant Point CNN with Spherical Harmonics kernels
A. Poulenard
Marie-Julie Rakotosaona
Yann Ponty
M. Ovsjanikov
3DPC
25
102
0
27 Jun 2019
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
29
382
0
24 Jun 2019
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
27
421
0
06 Jun 2019
Discrete Rotation Equivariance for Point Cloud Recognition
Jiaxin Li
Yingcai Bi
Gim Hee Lee
3DPC
27
24
0
31 Mar 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
61
402
0
11 Feb 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
26
1
0
24 Jan 2019
3DTI-Net: Learn Inner Transform Invariant 3D Geometry Features using Dynamic GCN
G. Pan
Jun Wang
R. Ying
Peilin Liu
3DPC
9
16
0
15 Dec 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
45
494
0
06 Jul 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
42
264
0
24 Jun 2018
Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks)
Taco S. Cohen
Mario Geiger
Maurice Weiler
33
46
0
28 Mar 2018
Previous
1
2
3
4
5
6
Next