ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08089
  4. Cited By
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem

Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem

22 February 2018
Andre Wibisono
ArXivPDFHTML

Papers citing "Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem"

48 / 48 papers shown
Title
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Jiaqi Leng
Zhiyan Ding
Zherui Chen
Lin Lin
62
0
0
08 May 2025
Mirror Mean-Field Langevin Dynamics
Mirror Mean-Field Langevin Dynamics
Anming Gu
Juno Kim
31
0
0
05 May 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
61
0
0
03 Mar 2025
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Xiao Wang
Tian Xie
62
0
0
26 Feb 2025
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
53
1
0
08 Feb 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
77
0
0
28 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
43
0
0
11 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
35
2
0
13 Oct 2024
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
128
1
0
08 Oct 2024
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
38
0
0
03 Oct 2024
Proximal Oracles for Optimization and Sampling
Proximal Oracles for Optimization and Sampling
Jiaming Liang
Yongxin Chen
31
3
0
02 Apr 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
76
12
0
08 Feb 2024
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Yiheng Jiang
Sinho Chewi
Aram-Alexandre Pooladian
29
7
0
05 Dec 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle
  Stochastic Approximation
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
27
7
0
27 May 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
24
20
0
10 Apr 2023
Query lower bounds for log-concave sampling
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
32
8
0
05 Apr 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional
  Compression
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
26
6
0
08 Mar 2023
An Explicit Expansion of the Kullback-Leibler Divergence along its
  Fisher-Rao Gradient Flow
An Explicit Expansion of the Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow
Carles Domingo-Enrich
Aram-Alexandre Pooladian
MDE
23
11
0
23 Feb 2023
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
27
19
0
25 Nov 2022
Birth-death dynamics for sampling: Global convergence, approximations
  and their asymptotics
Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics
Yulong Lu
D. Slepčev
Lihan Wang
32
22
0
01 Nov 2022
A Dynamical System View of Langevin-Based Non-Convex Sampling
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
37
4
0
25 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary
  Distribution for Log-Concave Sampling
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
30
24
0
16 Oct 2022
Fisher information lower bounds for sampling
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
49
15
0
05 Oct 2022
Nesterov smoothing for sampling without smoothness
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
37
2
0
15 Aug 2022
Sampling from Log-Concave Distributions over Polytopes via a
  Soft-Threshold Dikin Walk
Sampling from Log-Concave Distributions over Polytopes via a Soft-Threshold Dikin Walk
Oren Mangoubi
Nisheeth K. Vishnoi
74
2
0
19 Jun 2022
Utilising the CLT Structure in Stochastic Gradient based Sampling :
  Improved Analysis and Faster Algorithms
Utilising the CLT Structure in Stochastic Gradient based Sampling : Improved Analysis and Faster Algorithms
Aniket Das
Dheeraj M. Nagaraj
Anant Raj
49
6
0
08 Jun 2022
Convergence of Stein Variational Gradient Descent under a Weaker
  Smoothness Condition
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
21
19
0
01 Jun 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian
  Inference
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
24
12
0
27 May 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity
  Guarantees for Langevin Monte Carlo
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
35
60
0
10 Feb 2022
HMC and underdamped Langevin united in the unadjusted convex smooth case
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
20
10
0
02 Feb 2022
Convex Analysis of the Mean Field Langevin Dynamics
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
61
64
0
25 Jan 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
Sampling from Log-Concave Distributions with Infinity-Distance
  Guarantees
Sampling from Log-Concave Distributions with Infinity-Distance Guarantees
Oren Mangoubi
Nisheeth K. Vishnoi
16
14
0
07 Nov 2021
Statistical Finite Elements via Langevin Dynamics
Statistical Finite Elements via Langevin Dynamics
Ömer Deniz Akyildiz
Connor Duffin
Sotirios Sabanis
Mark Girolami
25
11
0
21 Oct 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
31
21
0
21 Oct 2021
A Proximal Algorithm for Sampling from Non-smooth Potentials
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
34
26
0
09 Oct 2021
When is the Convergence Time of Langevin Algorithms Dimension
  Independent? A Composite Optimization Viewpoint
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi-An Ma
Tong Zhang
37
16
0
05 Oct 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
The query complexity of sampling from strongly log-concave distributions
  in one dimension
The query complexity of sampling from strongly log-concave distributions in one dimension
Sinho Chewi
P. Gerber
Chen Lu
Thibaut Le Gouic
Philippe Rigollet
27
21
0
29 May 2021
Kernel Stein Discrepancy Descent
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
13
50
0
20 May 2021
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
A. Gretton
13
76
0
17 Jun 2020
Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin
  Algorithm
Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm
Adil Salim
Peter Richtárik
14
38
0
16 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
36
66
0
03 Jun 2020
Self-Paced Deep Reinforcement Learning
Self-Paced Deep Reinforcement Learning
Pascal Klink
Carlo DÉramo
Jan Peters
J. Pajarinen
ODL
15
54
0
24 Apr 2020
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
37
158
0
21 Oct 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1