ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.07095
  4. Cited By
Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow

Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow

20 February 2018
Eddy Ilg
Özgün Çiçek
Silvio Galesso
Aaron Klein
Osama Makansi
Frank Hutter
Thomas Brox
    UQCV
ArXivPDFHTML

Papers citing "Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow"

50 / 55 papers shown
Title
Continuous Normalizing Flows for Uncertainty-Aware Human Pose Estimation
Continuous Normalizing Flows for Uncertainty-Aware Human Pose Estimation
Shipeng Liu
Ziliang Xiong
Bastian Wandt
Per-Erik Forssén
45
0
0
04 May 2025
POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
Joey Wilson
Marcelino Almeida
Sachit Mahajan
Martin Labrie
Maani Ghaffari
Omid Ghasemalizadeh
Min Sun
Cheng-Hao Kuo
Arnab Sen
3DGS
60
0
0
10 Mar 2025
Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace Distribution
Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace Distribution
Yingda Yin
Jiangran Lyu
Yang Wang
Heru Wang
H. Wang
Bin Chen
OOD
105
4
0
24 Feb 2025
Zero-shot Depth Completion via Test-time Alignment with Affine-invariant Depth Prior
Lee Hyoseok
Kyeong Seon Kim
Kwon Byung-Ki
Tae-Hyun Oh
MDE
206
0
0
10 Feb 2025
Revisiting Gradient-based Uncertainty for Monocular Depth Estimation
Julia Hornauer
Amir El-Ghoussani
Vasileios Belagiannis
UQCV
59
0
0
09 Feb 2025
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
David Perera
Victor Letzelter
Théo Mariotte
Adrien Cortés
Mickaël Chen
S. Essid
Ga¨el Richard
77
3
0
20 Jan 2025
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
Yitian Shi
Edgar Welte
Maximilian Gilles
Rania Rayyes
40
3
0
06 Nov 2024
LatentBKI: Open-Dictionary Continuous Mapping in Visual-Language Latent Spaces with Quantifiable Uncertainty
LatentBKI: Open-Dictionary Continuous Mapping in Visual-Language Latent Spaces with Quantifiable Uncertainty
Joey Wilson
Ruihan Xu
Yile Sun
Parker Ewen
Minghan Zhu
Kira Barton
Maani Ghaffari
43
0
0
15 Oct 2024
Annealed Winner-Takes-All for Motion Forecasting
Annealed Winner-Takes-All for Motion Forecasting
Yihong Xu
Victor Letzelter
Mickaël Chen
Éloi Zablocki
Matthieu Cord
209
1
0
17 Sep 2024
Regularized Multi-Decoder Ensemble for an Error-Aware Scene
  Representation Network
Regularized Multi-Decoder Ensemble for an Error-Aware Scene Representation Network
Tianyu Xiong
Skylar W. Wurster
Hanqi Guo
Tom Peterka
Han-Wei Shen
UQCV
58
1
0
26 Jul 2024
IOVS4NeRF:Incremental Optimal View Selection for Large-Scale NeRFs
IOVS4NeRF:Incremental Optimal View Selection for Large-Scale NeRFs
Jingpeng Xie
Shiyu Tan
Yuanlei Wang
Yizhen Lao
Yifei Xue
Yizhen Lao
56
0
0
26 Jul 2024
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
E. Nehme
Rotem Mulayoff
T. Michaeli
UQCV
48
2
0
24 May 2024
Uncertainty Quantification Metrics for Deep Regression
Uncertainty Quantification Metrics for Deep Regression
Simon Kristoffersson Lind
Ziliang Xiong
Per-Erik Forssén
Volker Kruger
UQCV
34
3
0
07 May 2024
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Lingdong Kong
Xiang Xu
Jun Cen
Wenwei Zhang
Liang Pan
Kai-xiang Chen
Ziwei Liu
53
5
0
25 Mar 2024
On the Calibration of Uncertainty Estimation in LiDAR-based Semantic
  Segmentation
On the Calibration of Uncertainty Estimation in LiDAR-based Semantic Segmentation
M. Dreissig
Florian Piewak
Joschka Boedecker
UQCV
21
6
0
04 Aug 2023
A survey on deep learning in medical image registration: new
  technologies, uncertainty, evaluation metrics, and beyond
A survey on deep learning in medical image registration: new technologies, uncertainty, evaluation metrics, and beyond
Junyu Chen
Yihao Liu
Shuwen Wei
Zhangxing Bian
Shalini Subramanian
A. Carass
Jerry L. Prince
Yong Du
OOD
48
36
0
28 Jul 2023
Integrating Uncertainty into Neural Network-based Speech Enhancement
Integrating Uncertainty into Neural Network-based Speech Enhancement
Hu Fang
Dennis Becker
S. Wermter
Timo Gerkmann
UQCV
32
2
0
15 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
35
75
0
07 May 2023
Learning the Distribution of Errors in Stereo Matching for Joint
  Disparity and Uncertainty Estimation
Learning the Distribution of Errors in Stereo Matching for Joint Disparity and Uncertainty Estimation
Liyan Chen
Weihan Wang
Philippos Mordohai
UQCV
13
27
0
31 Mar 2023
A Laplace-inspired Distribution on SO(3) for Probabilistic Rotation
  Estimation
A Laplace-inspired Distribution on SO(3) for Probabilistic Rotation Estimation
Yingda Yin
Yang Wang
He Wang
Bin Chen
17
12
0
03 Mar 2023
Bayesian Deep Learning for Affordance Segmentation in images
Bayesian Deep Learning for Affordance Segmentation in images
Lorenzo Mur-Labadia
Ruben Martinez-Cantin
Jose J. Guerrero
BDL
UQCV
16
11
0
02 Mar 2023
Uncertainty Quantification for Deep Neural Networks: An Empirical
  Comparison and Usage Guidelines
Uncertainty Quantification for Deep Neural Networks: An Empirical Comparison and Usage Guidelines
Michael Weiss
Paolo Tonella
BDL
UQCV
30
11
0
14 Dec 2022
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in
  Long-tail Traffic Scenarios
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in Long-tail Traffic Scenarios
Liangzu Peng
Jun Li
Wenbo Shao
Hong Wang
37
9
0
07 Nov 2022
Unsupervised confidence for LiDAR depth maps and applications
Unsupervised confidence for LiDAR depth maps and applications
Andrea Conti
Matteo Poggi
Filippo Aleotti
S. Mattoccia
3DV
31
12
0
06 Oct 2022
Probing Contextual Diversity for Dense Out-of-Distribution Detection
Probing Contextual Diversity for Dense Out-of-Distribution Detection
Silvio Galesso
M. A. Bravo
Mehdi Naouar
Thomas Brox
21
4
0
30 Aug 2022
CUAHN-VIO: Content-and-Uncertainty-Aware Homography Network for
  Visual-Inertial Odometry
CUAHN-VIO: Content-and-Uncertainty-Aware Homography Network for Visual-Inertial Odometry
Ying Xu
Guido de Croon
BDL
41
5
0
30 Aug 2022
Latent Discriminant deterministic Uncertainty
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
26
18
0
20 Jul 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural
  Controlled Differential Equations
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
37
52
0
16 Jun 2022
Learning Probabilistic Topological Representations Using Discrete Morse
  Theory
Learning Probabilistic Topological Representations Using Discrete Morse Theory
Xiaoling Hu
Dimitris Samaras
Chao Chen
21
20
0
03 Jun 2022
FoV-Net: Field-of-View Extrapolation Using Self-Attention and
  Uncertainty
FoV-Net: Field-of-View Extrapolation Using Self-Attention and Uncertainty
Liqian Ma
Stamatios Georgoulis
Xu Jia
Luc Van Gool
32
6
0
04 Apr 2022
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for
  multiple uncertainty types and tasks
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Ángel Tena
Rémi Kazmierczak
Séverine Dubuisson
Emanuel Aldea
David Filliat
UQCV
26
28
0
02 Mar 2022
Image-to-Image Regression with Distribution-Free Uncertainty
  Quantification and Applications in Imaging
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging
Anastasios Nikolas Angelopoulos
Amit Kohli
Stephen Bates
Michael I. Jordan
Jitendra Malik
T. Alshaabi
S. Upadhyayula
Yaniv Romano
UQCV
OOD
16
94
0
10 Feb 2022
See Yourself in Others: Attending Multiple Tasks for Own Failure
  Detection
See Yourself in Others: Attending Multiple Tasks for Own Failure Detection
Bo Sun
Jiaxu Xing
Hermann Blum
Roland Siegwart
Cesar Cadena
41
12
0
06 Oct 2021
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal
  Estimation
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation
Gwangbin Bae
Ignas Budvytis
R. Cipolla
32
113
0
20 Sep 2021
A framework for benchmarking uncertainty in deep regression
A framework for benchmarking uncertainty in deep regression
F. Schmähling
Jörg Martin
Clemens Elster
UQCV
40
8
0
10 Sep 2021
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Chao Qu
Wenxin Liu
Camillo J Taylor
UQCV
BDL
22
31
0
29 Mar 2021
Learning to Segment Rigid Motions from Two Frames
Learning to Segment Rigid Motions from Two Frames
Gengshan Yang
Deva Ramanan
119
56
0
11 Jan 2021
Learning Accurate Dense Correspondences and When to Trust Them
Learning Accurate Dense Correspondences and When to Trust Them
Prune Truong
Martin Danelljan
Luc Van Gool
Radu Timofte
3DH
3DPC
79
129
0
05 Jan 2021
Volumetric Occupancy Mapping With Probabilistic Depth Completion for
  Robotic Navigation
Volumetric Occupancy Mapping With Probabilistic Depth Completion for Robotic Navigation
Marija Popović
Florian Thomas
Sotiris Papatheodorou
Nils Funk
Teresa Vidal-Calleja
Stefan Leutenegger
3DV
50
20
0
05 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
223
0
20 Nov 2020
Deep Multi-view Depth Estimation with Predicted Uncertainty
Deep Multi-view Depth Estimation with Predicted Uncertainty
Tong Ke
Tien Do
Khiem Vuong
K. Sartipi
S. Roumeliotis
UQCV
3DPC
16
16
0
19 Nov 2020
AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in
  the Wild
AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in the Wild
Zhe Zhang
Chunyu Wang
Weichao Qiu
Wenhu Qin
Wenjun Zeng
3DH
24
87
0
26 Oct 2020
Uncertainty Estimation and Sample Selection for Crowd Counting
Uncertainty Estimation and Sample Selection for Crowd Counting
Viresh Ranjan
Boyu Wang
M. Shah
Minh Hoai
UQCV
24
25
0
30 Sep 2020
On the uncertainty of self-supervised monocular depth estimation
On the uncertainty of self-supervised monocular depth estimation
Matteo Poggi
Filippo Aleotti
Fabio Tosi
S. Mattoccia
UQCV
MDE
33
263
0
13 May 2020
LUVLi Face Alignment: Estimating Landmarks' Location, Uncertainty, and
  Visibility Likelihood
LUVLi Face Alignment: Estimating Landmarks' Location, Uncertainty, and Visibility Likelihood
Abhinav Kumar
Tim K. Marks
Wenxuan Mou
Ye Wang
Michael J. Jones
A. Cherian
T. Koike-Akino
Xiaoming Liu
Chen Feng
CVBM
3DV
25
150
0
06 Apr 2020
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity
  as a Surrogate
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
21
30
0
28 Sep 2019
FreiHAND: A Dataset for Markerless Capture of Hand Pose and Shape from
  Single RGB Images
FreiHAND: A Dataset for Markerless Capture of Hand Pose and Shape from Single RGB Images
Christiane Zimmermann
Duygu Ceylan
Jimei Yang
Bryan C. Russell
Max Argus
Thomas Brox
3DH
189
399
0
10 Sep 2019
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adria Ruiz
Jakob Verbeek
VLM
30
22
0
19 Aug 2019
Overcoming Limitations of Mixture Density Networks: A Sampling and
  Fitting Framework for Multimodal Future Prediction
Overcoming Limitations of Mixture Density Networks: A Sampling and Fitting Framework for Multimodal Future Prediction
Osama Makansi
Eddy Ilg
Özgün Çiçek
Thomas Brox
36
192
0
09 Jun 2019
Deep Multi-modal Object Detection and Semantic Segmentation for
  Autonomous Driving: Datasets, Methods, and Challenges
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
Di Feng
Christian Haase-Schuetz
Lars Rosenbaum
Heinz Hertlein
Claudius Gläser
Fabian Duffhauss
W. Wiesbeck
Klaus C. J. Dietmayer
3DPC
41
989
0
21 Feb 2019
12
Next