ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.07028
  4. Cited By
High-Dimensional Bayesian Optimization via Additive Models with
  Overlapping Groups

High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups

20 February 2018
Paul Rolland
Jonathan Scarlett
Ilija Bogunovic
V. Cevher
ArXivPDFHTML

Papers citing "High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups"

30 / 30 papers shown
Title
Learning Low-Dimensional Embeddings for Black-Box Optimization
Learning Low-Dimensional Embeddings for Black-Box Optimization
Riccardo Busetto
Manas Mejari
Marco Forgione
Alberto Bemporad
Dario Piga
24
0
0
02 May 2025
Cliqueformer: Model-Based Optimization with Structured Transformers
Cliqueformer: Model-Based Optimization with Structured Transformers
J. Kuba
Pieter Abbeel
Sergey Levine
OffRL
AI4CE
62
2
0
17 Oct 2024
A survey and benchmark of high-dimensional Bayesian optimization of
  discrete sequences
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
49
4
0
07 Jun 2024
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Dawei Zhan
54
5
0
18 Apr 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
39
17
0
03 Feb 2024
Representing Additive Gaussian Processes by Sparse Matrices
Representing Additive Gaussian Processes by Sparse Matrices
Lu Zou
Haoyuan Chen
Liang Ding
28
0
0
29 Apr 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional
  Bayesian Optimization
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
24
4
0
16 Feb 2023
Efficient Planning in Combinatorial Action Spaces with Applications to
  Cooperative Multi-Agent Reinforcement Learning
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
Seyed Alireza Bakhtiari
Johannes Kirschner
Matej Jusup
Ilija Bogunovic
Csaba Szepesvári
32
5
0
08 Feb 2023
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
26
3
0
04 Aug 2022
Graph Neural Network Bandits
Graph Neural Network Bandits
Parnian Kassraie
Andreas Krause
Ilija Bogunovic
31
11
0
13 Jul 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
42
200
0
07 Jun 2022
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian
  Optimization
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian Optimization
Gilhyun Ryou
E. Tal
S. Karaman
32
4
0
01 Jun 2022
High Dimensional Bayesian Optimization with Kernel Principal Component
  Analysis
High Dimensional Bayesian Optimization with Kernel Principal Component Analysis
Kirill Antonov
Elena Raponi
Hao Wang
Carola Doerr
27
10
0
28 Apr 2022
Scaling Bayesian Optimization With Game Theory
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
26
1
0
07 Oct 2021
Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
  Modeling
Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian Modeling
Kai Wang
Bryan Wilder
S. Suen
B. Dilkina
Milind Tambe
180
0
0
07 Jul 2021
High-Dimensional Bayesian Optimization via Tree-Structured Additive
  Models
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
E. Han
Ishank Arora
Jonathan Scarlett
TPM
AI4CE
33
17
0
24 Dec 2020
Parameter Optimization using high-dimensional Bayesian Optimization
Parameter Optimization using high-dimensional Bayesian Optimization
David Yenicelik
30
2
0
05 Oct 2020
Learning Search Space Partition for Black-box Optimization using Monte
  Carlo Tree Search
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
43
126
0
01 Jul 2020
Additive Tree-Structured Covariance Function for Conditional Parameter
  Spaces in Bayesian Optimization
Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization
Xingchen Ma
Matthew B. Blaschko
34
7
0
21 Jun 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
35
51
0
04 Mar 2020
Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
  Data to Hyper-Parameters
Automatic Hyper-Parameter Optimization Based on Mapping Discovery from Data to Hyper-Parameters
Bozhou Chen
Kaixin Zhang
Longshen Ou
Chenmin Ba
Hongzhi Wang
Chunnan Wang
24
2
0
03 Mar 2020
Scalable Constrained Bayesian Optimization
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
33
95
0
20 Feb 2020
Trading Convergence Rate with Computational Budget in High Dimensional
  Bayesian Optimization
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
22
14
0
27 Nov 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
51
452
0
03 Oct 2019
High Dimensional Bayesian Optimization via Supervised Dimension
  Reduction
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
24
44
0
21 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
34
174
0
15 Mar 2019
High-dimensional Bayesian optimization using low-dimensional feature
  spaces
High-dimensional Bayesian optimization using low-dimensional feature spaces
Riccardo Moriconi
M. Deisenroth
K. S. S. Kumar
14
11
0
27 Feb 2019
A survey on policy search algorithms for learning robot controllers in a
  handful of trials
A survey on policy search algorithms for learning robot controllers in a handful of trials
Konstantinos Chatzilygeroudis
Vassilis Vassiliades
F. Stulp
Sylvain Calinon
Jean-Baptiste Mouret
17
155
0
06 Jul 2018
Tight Regret Bounds for Bayesian Optimization in One Dimension
Tight Regret Bounds for Bayesian Optimization in One Dimension
Jonathan Scarlett
41
27
0
30 May 2018
1