ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06153
  4. Cited By
A Likelihood-Free Inference Framework for Population Genetic Data using
  Exchangeable Neural Networks

A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks

16 February 2018
Jeffrey Chan
Valerio Perrone
J. Spence
Paul A. Jenkins
Sara Mathieson
Yun S. Song
ArXivPDFHTML

Papers citing "A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks"

17 / 17 papers shown
Title
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
625
15
0
04 Oct 2023
On the Local Minima of the Empirical Risk
On the Local Minima of the Empirical Risk
Chi Jin
Lydia T. Liu
Rong Ge
Michael I. Jordan
FedML
124
56
0
25 Mar 2018
Mastering Chess and Shogi by Self-Play with a General Reinforcement
  Learning Algorithm
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
...
D. Kumaran
T. Graepel
Timothy Lillicrap
Karen Simonyan
Demis Hassabis
139
1,769
0
05 Dec 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
294
5,827
0
14 Jun 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
400
2,462
0
10 Mar 2017
Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs
Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs
Alon Brutzkus
Amir Globerson
MLT
165
313
0
26 Feb 2017
Permutation-equivariant neural networks applied to dynamics prediction
Permutation-equivariant neural networks applied to dynamics prediction
N. Guttenberg
N. Virgo
Olaf Witkowski
H. Aoki
Ryota Kanai
75
56
0
14 Dec 2016
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
822
5,806
0
05 Dec 2016
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
336
4,625
0
10 Nov 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
156
158
0
20 May 2016
Learning Summary Statistic for Approximate Bayesian Computation via Deep
  Neural Network
Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network
Bai Jiang
Tung-Yu Wu
Charles Yang Zheng
W. Wong
BDL
290
142
0
08 Oct 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
220
1,510
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
815
9,302
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
185
1,886
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
127
944
0
18 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Non-linear regression models for Approximate Bayesian Computation
Non-linear regression models for Approximate Bayesian Computation
M. Blum
O. François
213
484
0
24 Sep 2008
1