Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.06153
Cited By
A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
16 February 2018
Jeffrey Chan
Valerio Perrone
J. Spence
Paul A. Jenkins
Sara Mathieson
Yun S. Song
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks"
17 / 17 papers shown
Title
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
625
15
0
04 Oct 2023
On the Local Minima of the Empirical Risk
Chi Jin
Lydia T. Liu
Rong Ge
Michael I. Jordan
FedML
124
56
0
25 Mar 2018
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
...
D. Kumaran
T. Graepel
Timothy Lillicrap
Karen Simonyan
Demis Hassabis
139
1,769
0
05 Dec 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
294
5,827
0
14 Jun 2017
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
400
2,462
0
10 Mar 2017
Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs
Alon Brutzkus
Amir Globerson
MLT
165
313
0
26 Feb 2017
Permutation-equivariant neural networks applied to dynamics prediction
N. Guttenberg
N. Virgo
Olaf Witkowski
H. Aoki
Ryota Kanai
75
56
0
14 Dec 2016
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
822
5,806
0
05 Dec 2016
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
336
4,625
0
10 Nov 2016
Fast
ε
ε
ε
-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
156
158
0
20 May 2016
Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network
Bai Jiang
Tung-Yu Wu
Charles Yang Zheng
W. Wong
BDL
290
142
0
08 Oct 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
220
1,510
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
815
9,302
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
185
1,886
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
127
944
0
18 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Non-linear regression models for Approximate Bayesian Computation
M. Blum
O. François
213
484
0
24 Sep 2008
1