ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05666
  4. Cited By
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks

Adversarial Risk and the Dangers of Evaluating Against Weak Attacks

15 February 2018
J. Uesato
Brendan O'Donoghue
Aaron van den Oord
Pushmeet Kohli
    AAML
ArXivPDFHTML

Papers citing "Adversarial Risk and the Dangers of Evaluating Against Weak Attacks"

50 / 151 papers shown
Title
On Adaptive Attacks to Adversarial Example Defenses
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
A. Madry
AAML
104
822
0
19 Feb 2020
Machine Learning in Python: Main developments and technology trends in
  data science, machine learning, and artificial intelligence
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
484
0
12 Feb 2020
Fast is better than free: Revisiting adversarial training
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
99
1,158
0
12 Jan 2020
Benchmarking Adversarial Robustness
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
28
36
0
26 Dec 2019
Enhancing Cross-task Black-Box Transferability of Adversarial Examples
  with Dispersion Reduction
Enhancing Cross-task Black-Box Transferability of Adversarial Examples with Dispersion Reduction
Yantao Lu
Yunhan Jia
Jianyu Wang
Bai Li
Weiheng Chai
Lawrence Carin
Senem Velipasalar
AAML
21
81
0
22 Nov 2019
Fine-grained Synthesis of Unrestricted Adversarial Examples
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
37
13
0
20 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
18
104
0
13 Nov 2019
The Threat of Adversarial Attacks on Machine Learning in Network
  Security -- A Survey
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
37
68
0
06 Nov 2019
Enhancing Certifiable Robustness via a Deep Model Ensemble
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
33
9
0
31 Oct 2019
An Alternative Surrogate Loss for PGD-based Adversarial Testing
An Alternative Surrogate Loss for PGD-based Adversarial Testing
Sven Gowal
J. Uesato
Chongli Qin
Po-Sen Huang
Timothy A. Mann
Pushmeet Kohli
AAML
50
89
0
21 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a
  Strength
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Perturbations are not Enough: Generating Adversarial Examples with
  Spatial Distortions
Perturbations are not Enough: Generating Adversarial Examples with Spatial Distortions
He Zhao
Trung Le
Paul Montague
O. Vel
Tamas Abraham
Dinh Q. Phung
AAML
28
8
0
03 Oct 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for
  Embedded Neural Networks
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
Saccader: Improving Accuracy of Hard Attention Models for Vision
Saccader: Improving Accuracy of Hard Attention Models for Vision
Gamaleldin F. Elsayed
Simon Kornblith
Quoc V. Le
VLM
29
72
0
20 Aug 2019
Density estimation in representation space to predict model uncertainty
Density estimation in representation space to predict model uncertainty
Tiago Ramalho
M. Corbalan
UQCV
BDL
16
38
0
20 Aug 2019
Accurate, reliable and fast robustness evaluation
Accurate, reliable and fast robustness evaluation
Wieland Brendel
Jonas Rauber
Matthias Kümmerer
Ivan Ustyuzhaninov
Matthias Bethge
AAML
OOD
13
111
0
01 Jul 2019
Evolving Robust Neural Architectures to Defend from Adversarial Attacks
Evolving Robust Neural Architectures to Defend from Adversarial Attacks
Shashank Kotyan
Danilo Vasconcellos Vargas
OOD
AAML
24
36
0
27 Jun 2019
Quantitative Verification of Neural Networks And its Security
  Applications
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
18
104
0
25 Jun 2019
Robustness Verification of Tree-based Models
Robustness Verification of Tree-based Models
Hongge Chen
Huan Zhang
Si Si
Yang Li
Duane S. Boning
Cho-Jui Hsieh
AAML
17
76
0
10 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed
  Classifiers
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
33
536
0
09 Jun 2019
Multi-way Encoding for Robustness
Multi-way Encoding for Robustness
Donghyun Kim
Sarah Adel Bargal
Jianming Zhang
Stan Sclaroff
AAML
18
2
0
05 Jun 2019
Functional Adversarial Attacks
Functional Adversarial Attacks
Cassidy Laidlaw
S. Feizi
AAML
19
183
0
29 May 2019
Certifiably Robust Interpretation in Deep Learning
Certifiably Robust Interpretation in Deep Learning
Alexander Levine
Sahil Singla
S. Feizi
FAtt
AAML
31
63
0
28 May 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
10
168
0
28 May 2019
Scaleable input gradient regularization for adversarial robustness
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Adversarial Policies: Attacking Deep Reinforcement Learning
Adversarial Policies: Attacking Deep Reinforcement Learning
Adam Gleave
Michael Dennis
Cody Wild
Neel Kant
Sergey Levine
Stuart J. Russell
AAML
27
349
0
25 May 2019
What Do Adversarially Robust Models Look At?
What Do Adversarially Robust Models Look At?
Takahiro Itazuri
Yoshihiro Fukuhara
Hirokatsu Kataoka
Shigeo Morishima
19
5
0
19 May 2019
Adversarial Training for Free!
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
68
1,227
0
29 Apr 2019
Detecting Overfitting via Adversarial Examples
Detecting Overfitting via Adversarial Examples
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
TDI
26
45
0
06 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial
  Perturbations
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
Verification of Non-Linear Specifications for Neural Networks
Verification of Non-Linear Specifications for Neural Networks
Chongli Qin
Krishnamurthy Dvijotham
Dvijotham
Brendan O'Donoghue
Rudy Bunel
Robert Stanforth
Sven Gowal
J. Uesato
G. Swirszcz
Pushmeet Kohli
AAML
14
43
0
25 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
17
1,995
0
08 Feb 2019
Defending Against Universal Perturbations With Shared Adversarial
  Training
Defending Against Universal Perturbations With Shared Adversarial Training
Chaithanya Kumar Mummadi
Thomas Brox
J. H. Metzen
AAML
18
60
0
10 Dec 2018
MMA Training: Direct Input Space Margin Maximization through Adversarial
  Training
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
21
270
0
06 Dec 2018
Robustness via curvature regularization, and vice versa
Robustness via curvature regularization, and vice versa
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
AAML
29
318
0
23 Nov 2018
Scalable agent alignment via reward modeling: a research direction
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
34
397
0
19 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
15
68
0
13 Nov 2018
Logit Pairing Methods Can Fool Gradient-Based Attacks
Logit Pairing Methods Can Fool Gradient-Based Attacks
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
27
82
0
29 Oct 2018
Combinatorial Attacks on Binarized Neural Networks
Combinatorial Attacks on Binarized Neural Networks
Elias Boutros Khalil
Amrita Gupta
B. Dilkina
AAML
49
40
0
08 Oct 2018
Unrestricted Adversarial Examples
Unrestricted Adversarial Examples
Tom B. Brown
Nicholas Carlini
Chiyuan Zhang
Catherine Olsson
Paul Christiano
Ian Goodfellow
AAML
29
101
0
22 Sep 2018
On the Structural Sensitivity of Deep Convolutional Networks to the
  Directions of Fourier Basis Functions
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
18
62
0
11 Sep 2018
Training for Faster Adversarial Robustness Verification via Inducing
  ReLU Stability
Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao
Vincent Tjeng
Nur Muhammad (Mahi) Shafiullah
A. Madry
AAML
OOD
12
199
0
09 Sep 2018
Monge blunts Bayes: Hardness Results for Adversarial Training
Monge blunts Bayes: Hardness Results for Adversarial Training
Zac Cranko
A. Menon
Richard Nock
Cheng Soon Ong
Zhan Shi
Christian J. Walder
AAML
26
16
0
08 Jun 2018
Re-evaluating Evaluation
Re-evaluating Evaluation
David Balduzzi
K. Tuyls
Julien Perolat
T. Graepel
MoMe
30
97
0
07 Jun 2018
Towards the first adversarially robust neural network model on MNIST
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
369
0
23 May 2018
Deep Nets: What have they ever done for Vision?
Deep Nets: What have they ever done for Vision?
Alan Yuille
Chenxi Liu
25
100
0
10 May 2018
Adversarial vulnerability for any classifier
Adversarial vulnerability for any classifier
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
33
248
0
23 Feb 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,112
0
04 Nov 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
308
5,842
0
08 Jul 2016
Previous
1234
Next