ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04697
  4. Cited By
Learning to Search with MCTSnets

Learning to Search with MCTSnets

13 February 2018
A. Guez
T. Weber
Ioannis Antonoglou
Karen Simonyan
Oriol Vinyals
Daan Wierstra
Rémi Munos
David Silver
ArXivPDFHTML

Papers citing "Learning to Search with MCTSnets"

50 / 56 papers shown
Title
Solving Sokoban using Hierarchical Reinforcement Learning with Landmarks
Solving Sokoban using Hierarchical Reinforcement Learning with Landmarks
Sergey Pastukhov
31
0
0
06 Apr 2025
What Matters in Hierarchical Search for Combinatorial Reasoning Problems?
What Matters in Hierarchical Search for Combinatorial Reasoning Problems?
Michał Zawalski
Gracjan Góral
Michał Tyrolski
Emilia Wisnios
Franciszek Budrowski
Marek Cygan
Łukasz Kuciński
Piotr Miłoś
47
0
0
05 Jun 2024
Beyond A*: Better Planning with Transformers via Search Dynamics
  Bootstrapping
Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping
Lucas Lehnert
Sainbayar Sukhbaatar
DiJia Su
Qinqing Zheng
Paul Mcvay
Michael Rabbat
Yuandong Tian
37
54
0
21 Feb 2024
Optimize Planning Heuristics to Rank, not to Estimate Cost-to-Goal
Optimize Planning Heuristics to Rank, not to Estimate Cost-to-Goal
Leah A. Chrestien
Tomás Pevný
Stefan Edelkamp
Antonín Komenda
36
9
0
30 Oct 2023
AI planning in the imagination: High-level planning on learned abstract
  search spaces
AI planning in the imagination: High-level planning on learned abstract search spaces
Carlos Martin
T. Sandholm
37
0
0
16 Aug 2023
Thinker: Learning to Plan and Act
Thinker: Learning to Plan and Act
Stephen Chung
Ivan Anokhin
David M. Krueger
LLMAG
OffRL
LRM
30
5
0
27 Jul 2023
What model does MuZero learn?
What model does MuZero learn?
Jinke He
Thomas M. Moerland
F. Oliehoek
33
4
0
01 Jun 2023
A Review of Symbolic, Subsymbolic and Hybrid Methods for Sequential
  Decision Making
A Review of Symbolic, Subsymbolic and Hybrid Methods for Sequential Decision Making
Carlos Núnez-Molina
Pablo Mesejo
Juan Fernández-Olivares
30
3
0
20 Apr 2023
Learning Graph Search Heuristics
Learning Graph Search Heuristics
Michal Pándy
Weikang Qiu
Gabriele Corso
Petar Velivcković
Rex Ying
J. Leskovec
Pietro Lio
GNN
32
8
0
07 Dec 2022
Winning the CityLearn Challenge: Adaptive Optimization with Evolutionary
  Search under Trajectory-based Guidance
Winning the CityLearn Challenge: Adaptive Optimization with Evolutionary Search under Trajectory-based Guidance
Vanshaj Khattar
Ming Jin
18
12
0
04 Dec 2022
A Differentiable Loss Function for Learning Heuristics in A*
A Differentiable Loss Function for Learning Heuristics in A*
Leah A. Chrestien
Tomás Pevný
Antonín Komenda
Stefan Edelkamp
12
0
0
12 Sep 2022
TASKOGRAPHY: Evaluating robot task planning over large 3D scene graphs
TASKOGRAPHY: Evaluating robot task planning over large 3D scene graphs
Christopher Agia
Krishna Murthy Jatavallabhula
M. Khodeir
O. Mikšík
Vibhav Vineet
Mustafa Mukadam
Liam Paull
Florian Shkurti
27
68
0
11 Jul 2022
Reinforcement Learning in Practice: Opportunities and Challenges
Reinforcement Learning in Practice: Opportunities and Challenges
Yuxi Li
OffRL
36
9
0
23 Feb 2022
ExPoSe: Combining State-Based Exploration with Gradient-Based Online
  Search
ExPoSe: Combining State-Based Exploration with Gradient-Based Online Search
Dixant Mittal
Siddharth Aravindan
W. Lee
OnRL
11
3
0
03 Feb 2022
Differentiable Spatial Planning using Transformers
Differentiable Spatial Planning using Transformers
Devendra Singh Chaplot
Deepak Pathak
Jitendra Malik
27
37
0
02 Dec 2021
Neural Algorithmic Reasoners are Implicit Planners
Neural Algorithmic Reasoners are Implicit Planners
Andreea Deac
Petar Velivcković
Ognjen Milinković
Pierre-Luc Bacon
Jian Tang
Mladen Nikolic
OffRL
34
23
0
11 Oct 2021
Potential-based Reward Shaping in Sokoban
Potential-based Reward Shaping in Sokoban
Zhao Yang
Mike Preuss
Aske Plaat
OffRL
11
2
0
10 Sep 2021
INVIGORATE: Interactive Visual Grounding and Grasping in Clutter
INVIGORATE: Interactive Visual Grounding and Grasping in Clutter
Hanbo Zhang
Yunfan Lu
Cunjun Yu
David Hsu
Xuguang Lan
Nanning Zheng
LM&Ro
26
63
0
25 Aug 2021
High-Accuracy Model-Based Reinforcement Learning, a Survey
High-Accuracy Model-Based Reinforcement Learning, a Survey
Aske Plaat
W. Kosters
Mike Preuss
OffRL
21
37
0
17 Jul 2021
ScheduleNet: Learn to solve multi-agent scheduling problems with
  reinforcement learning
ScheduleNet: Learn to solve multi-agent scheduling problems with reinforcement learning
Junyoung Park
Sanjar Bakhtiyar
Jinkyoo Park
18
38
0
06 Jun 2021
Procedural Content Generation: Better Benchmarks for Transfer
  Reinforcement Learning
Procedural Content Generation: Better Benchmarks for Transfer Reinforcement Learning
Matthias Muller-Brockhausen
Mike Preuss
Aske Plaat
33
9
0
31 May 2021
Transfer Learning and Curriculum Learning in Sokoban
Transfer Learning and Curriculum Learning in Sokoban
Zhao Yang
Mike Preuss
Aske Plaat
OffRL
24
3
0
25 May 2021
Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation
Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation
Peter Karkus
Shaojun Cai
David Hsu
14
65
0
17 May 2021
Closing the Planning-Learning Loop with Application to Autonomous
  Driving
Closing the Planning-Learning Loop with Application to Autonomous Driving
Panpan Cai
David Hsu
34
13
0
11 Jan 2021
How to Train Your Differentiable Filter
How to Train Your Differentiable Filter
Alina Kloss
Georg Martius
Jeannette Bohg
36
46
0
28 Dec 2020
Learning Discrete Energy-based Models via Auxiliary-variable Local
  Exploration
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration
H. Dai
Rishabh Singh
Bo Dai
Charles Sutton
Dale Schuurmans
27
26
0
10 Nov 2020
XLVIN: eXecuted Latent Value Iteration Nets
XLVIN: eXecuted Latent Value Iteration Nets
Andreea Deac
Petar Velivcković
Ognjen Milinković
Pierre-Luc Bacon
Jian Tang
Mladen Nikolic
16
19
0
25 Oct 2020
Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a
  Survey
Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a Survey
Aske Plaat
W. Kosters
Mike Preuss
BDL
OffRL
21
17
0
11 Aug 2020
Monte-Carlo Tree Search as Regularized Policy Optimization
Monte-Carlo Tree Search as Regularized Policy Optimization
Jean-Bastien Grill
Florent Altché
Yunhao Tang
Thomas Hubert
Michal Valko
Ioannis Antonoglou
Rémi Munos
27
73
0
24 Jul 2020
Model-based Reinforcement Learning: A Survey
Model-based Reinforcement Learning: A Survey
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
33
47
0
30 Jun 2020
Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search
Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search
Binghong Chen
Chengtao Li
H. Dai
Le Song
17
105
0
29 Jun 2020
Differentiable Mapping Networks: Learning Structured Map Representations
  for Sparse Visual Localization
Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization
Peter Karkus
A. Angelova
Vincent Vanhoucke
Rico Jonschkowski
17
11
0
19 May 2020
Combining Q-Learning and Search with Amortized Value Estimates
Combining Q-Learning and Search with Amortized Value Estimates
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
Tobias Pfaff
T. Weber
Lars Buesing
Peter W. Battaglia
OffRL
27
47
0
05 Dec 2019
Adaptive Online Planning for Continual Lifelong Learning
Adaptive Online Planning for Continual Lifelong Learning
Kevin Lu
Igor Mordatch
Pieter Abbeel
OffRL
OnRL
CLL
11
15
0
03 Dec 2019
Learning Transferable Graph Exploration
Learning Transferable Graph Exploration
H. Dai
Yujia Li
Chenglong Wang
Rishabh Singh
Po-Sen Huang
Pushmeet Kohli
17
21
0
28 Oct 2019
Deep Value Model Predictive Control
Deep Value Model Predictive Control
Farbod Farshidian
David Hoeller
Marco Hutter
17
45
0
08 Oct 2019
Unsupervised Doodling and Painting with Improved SPIRAL
Unsupervised Doodling and Painting with Improved SPIRAL
John F. J. Mellor
Eunbyung Park
Yaroslav Ganin
Igor Babuschkin
Tejas D. Kulkarni
Dan Rosenbaum
Andy Ballard
T. Weber
Oriol Vinyals
S. M. Ali Eslami
30
44
0
02 Oct 2019
A Review of Tracking, Prediction and Decision Making Methods for
  Autonomous Driving
A Review of Tracking, Prediction and Decision Making Methods for Autonomous Driving
Florin Leon
M. Gavrilescu
22
95
0
17 Sep 2019
On the Feasibility of Learning, Rather than Assuming, Human Biases for
  Reward Inference
On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference
Rohin Shah
Noah Gundotra
Pieter Abbeel
Anca Dragan
16
70
0
23 Jun 2019
A novel approach to model exploration for value function learning
A novel approach to model exploration for value function learning
Zlatan Ajanović
Halil Beglerovic
B. Lacevic
16
1
0
06 Jun 2019
Differentiable Algorithm Networks for Composable Robot Learning
Differentiable Algorithm Networks for Composable Robot Learning
Peter Karkus
Xiao Ma
David Hsu
L. Kaelbling
Wee Sun Lee
Tomas Lozano-Perez
14
70
0
28 May 2019
Neural Packet Classification
Neural Packet Classification
Eric Liang
Hang Zhu
Xin Jin
Ion Stoica
OffRL
35
120
0
27 Feb 2019
An investigation of model-free planning
An investigation of model-free planning
A. Guez
M. Berk Mirza
Karol Gregor
Rishabh Kabra
S. Racanière
...
Laurent Orseau
Tom Eccles
Greg Wayne
David Silver
Timothy Lillicrap
OffRL
25
111
0
11 Jan 2019
Dynamic Planning Networks
Dynamic Planning Networks
Norman L. Tasfi
Miriam A. M. Capretz
11
5
0
28 Dec 2018
Deep Multi-Agent Reinforcement Learning with Relevance Graphs
Deep Multi-Agent Reinforcement Learning with Relevance Graphs
Aleksandra Malysheva
Tegg Taekyong Sung
Chae-Bong Sohn
D. Kudenko
A. Shpilman
11
44
0
30 Nov 2018
Planning in Dynamic Environments with Conditional Autoregressive Models
Planning in Dynamic Environments with Conditional Autoregressive Models
Johanna Hansen
Kyle Kastner
Aaron Courville
Gregory Dudek
14
1
0
25 Nov 2018
The Barbados 2018 List of Open Issues in Continual Learning
The Barbados 2018 List of Open Issues in Continual Learning
Tom Schaul
H. V. Hasselt
Joseph Modayil
Martha White
Adam White
Pierre-Luc Bacon
J. Harb
Shibl Mourad
Marc G. Bellemare
Doina Precup
LM&Ro
3DV
14
10
0
16 Nov 2018
Deep Reinforcement Learning
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
28
144
0
15 Oct 2018
Active Inverse Reward Design
Active Inverse Reward Design
Sören Mindermann
Rohin Shah
Adam Gleave
Dylan Hadfield-Menell
16
20
0
09 Sep 2018
Small Sample Learning in Big Data Era
Small Sample Learning in Big Data Era
Jun Shu
Zongben Xu
Deyu Meng
29
71
0
14 Aug 2018
12
Next