Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04434
Cited By
signSGD: Compressed Optimisation for Non-Convex Problems
13 February 2018
Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"signSGD: Compressed Optimisation for Non-Convex Problems"
38 / 188 papers shown
Title
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
27
12
0
06 Mar 2020
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
Richeng Jin
Yufan Huang
Xiaofan He
H. Dai
Tianfu Wu
FedML
22
63
0
25 Feb 2020
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
17
326
0
22 Feb 2020
Uncertainty Principle for Communication Compression in Distributed and Federated Learning and the Search for an Optimal Compressor
M. Safaryan
Egor Shulgin
Peter Richtárik
24
60
0
20 Feb 2020
LaProp: Separating Momentum and Adaptivity in Adam
Liu Ziyin
Zhikang T.Wang
Masahito Ueda
ODL
8
18
0
12 Feb 2020
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Xuan Li
ODL
200
57
0
09 Feb 2020
Communication Efficient Federated Learning over Multiple Access Channels
Wei-Ting Chang
Ravi Tandon
FedML
8
44
0
23 Jan 2020
One-Bit Over-the-Air Aggregation for Communication-Efficient Federated Edge Learning: Design and Convergence Analysis
Guangxu Zhu
Yuqing Du
Deniz Gunduz
Kaibin Huang
36
308
0
16 Jan 2020
AdderNet: Do We Really Need Multiplications in Deep Learning?
Hanting Chen
Yunhe Wang
Chunjing Xu
Boxin Shi
Chao Xu
Qi Tian
Chang Xu
18
194
0
31 Dec 2019
Randomized Reactive Redundancy for Byzantine Fault-Tolerance in Parallelized Learning
Nirupam Gupta
Nitin H. Vaidya
FedML
30
8
0
19 Dec 2019
On the Discrepancy between the Theoretical Analysis and Practical Implementations of Compressed Communication for Distributed Deep Learning
Aritra Dutta
El Houcine Bergou
A. Abdelmoniem
Chen-Yu Ho
Atal Narayan Sahu
Marco Canini
Panos Kalnis
25
76
0
19 Nov 2019
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning
XINYAN DAI
Xiao Yan
Kaiwen Zhou
Han Yang
K. K. Ng
James Cheng
Yu Fan
FedML
24
47
0
12 Nov 2019
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
Chaouki Ben Issaid
M. Bennis
Vaneet Aggarwal
24
67
0
23 Oct 2019
High-Dimensional Stochastic Gradient Quantization for Communication-Efficient Edge Learning
Yuqing Du
Sheng Yang
Kaibin Huang
29
99
0
09 Oct 2019
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack
Minhao Cheng
Simranjit Singh
Patrick H. Chen
Pin-Yu Chen
Sijia Liu
Cho-Jui Hsieh
AAML
124
219
0
24 Sep 2019
diffGrad: An Optimization Method for Convolutional Neural Networks
S. Dubey
Soumendu Chakraborty
S. K. Roy
Snehasis Mukherjee
S. Singh
B. B. Chaudhuri
ODL
97
183
0
12 Sep 2019
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
21
22
0
10 Sep 2019
Robust and Communication-Efficient Collaborative Learning
Amirhossein Reisizadeh
Hossein Taheri
Aryan Mokhtari
Hamed Hassani
Ramtin Pedarsani
17
89
0
24 Jul 2019
Federated Learning over Wireless Fading Channels
M. Amiri
Deniz Gunduz
27
505
0
23 Jul 2019
QUOTIENT: Two-Party Secure Neural Network Training and Prediction
Nitin Agrawal
Ali Shahin Shamsabadi
Matt J. Kusner
Adria Gascon
22
212
0
08 Jul 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
17
316
0
31 May 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
21
207
0
29 May 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
150
0
27 May 2019
LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning
Jingjing Zhang
Osvaldo Simeone
18
31
0
22 May 2019
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Yang You
Jing Li
Sashank J. Reddi
Jonathan Hseu
Sanjiv Kumar
Srinadh Bhojanapalli
Xiaodan Song
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
ODL
28
978
0
01 Apr 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
24
1,330
0
07 Mar 2019
Distributed Learning with Sublinear Communication
Jayadev Acharya
Christopher De Sa
Dylan J. Foster
Karthik Sridharan
FedML
21
40
0
28 Feb 2019
On Maintaining Linear Convergence of Distributed Learning and Optimization under Limited Communication
Sindri Magnússon
H. S. Ghadikolaei
Na Li
19
81
0
26 Feb 2019
Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and Projection Free
Mingrui Zhang
Lin Chen
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
16
8
0
17 Feb 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
A Distributed Synchronous SGD Algorithm with Global Top-
k
k
k
Sparsification for Low Bandwidth Networks
S. Shi
Qiang-qiang Wang
Kaiyong Zhao
Zhenheng Tang
Yuxin Wang
Xiang Huang
Xiaowen Chu
32
134
0
14 Jan 2019
A Sufficient Condition for Convergences of Adam and RMSProp
Fangyu Zou
Li Shen
Zequn Jie
Weizhong Zhang
Wei Liu
27
364
0
23 Nov 2018
Policy Gradient in Partially Observable Environments: Approximation and Convergence
Kamyar Azizzadenesheli
Manish Kumar Bera
Anima Anandkumar
OffRL
22
8
0
18 Oct 2018
signSGD with Majority Vote is Communication Efficient And Fault Tolerant
Jeremy Bernstein
Jiawei Zhao
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
23
46
0
11 Oct 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
18
348
0
22 Aug 2018
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
54
429
0
22 Aug 2018
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
11
210
0
22 May 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
Previous
1
2
3
4