Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04434
Cited By
signSGD: Compressed Optimisation for Non-Convex Problems
13 February 2018
Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"signSGD: Compressed Optimisation for Non-Convex Problems"
50 / 188 papers shown
Title
Breaking the Communication-Privacy-Accuracy Tradeoff with
f
f
f
-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q. S. Quek
H. Dai
FedML
29
2
0
19 Feb 2023
Symbolic Discovery of Optimization Algorithms
Xiangning Chen
Chen Liang
Da Huang
Esteban Real
Kaiyuan Wang
...
Xuanyi Dong
Thang Luong
Cho-Jui Hsieh
Yifeng Lu
Quoc V. Le
64
352
0
13 Feb 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
24
18
0
01 Feb 2023
PolarAir: A Compressed Sensing Scheme for Over-the-Air Federated Learning
Michail Gkagkos
Krishna R. Narayanan
J. Chamberland
C. Georghiades
40
0
0
24 Jan 2023
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
24
25
0
24 Jan 2023
M22: A Communication-Efficient Algorithm for Federated Learning Inspired by Rate-Distortion
Yangyi Liu
Stefano Rini
Sadaf Salehkalaibar
Jun Chen
FedML
21
4
0
23 Jan 2023
CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence
Kun-Yen Huang
Shin-Yi Pu
30
9
0
14 Jan 2023
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Does compressing activations help model parallel training?
S. Bian
Dacheng Li
Hongyi Wang
Eric P. Xing
Shivaram Venkataraman
19
5
0
06 Jan 2023
Efficient On-device Training via Gradient Filtering
Yuedong Yang
Guihong Li
R. Marculescu
31
18
0
01 Jan 2023
Federated Learning with Flexible Control
Shiqiang Wang
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
28
17
0
16 Dec 2022
Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning
Mingyuan Fan
Cen Chen
Chengyu Wang
Ximeng Liu
Wenmeng Zhou
Jun Huang
AAML
FedML
34
0
0
05 Dec 2022
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
32
4
0
25 Nov 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
21
6
0
31 Oct 2022
An Empirical Evaluation of Zeroth-Order Optimization Methods on AI-driven Molecule Optimization
Elvin Lo
Pin-Yu Chen
37
0
0
27 Oct 2022
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
R. L. Jin
Jiebo Luo
Tianbao Yang
FedML
47
8
0
26 Oct 2022
Learning to Invert: Simple Adaptive Attacks for Gradient Inversion in Federated Learning
Ruihan Wu
Xiangyu Chen
Chuan Guo
Kilian Q. Weinberger
FedML
12
26
0
19 Oct 2022
Over-the-Air Computation Based on Balanced Number Systems for Federated Edge Learning
Alphan Șahin
FedML
28
14
0
13 Oct 2022
Over-the-Air Computation over Balanced Numerals
Alphan Șahin
Rui Yang
23
9
0
22 Sep 2022
A Demonstration of Over-the-Air Computation for Federated Edge Learning
Alphan Șahin
17
7
0
20 Sep 2022
Joint Privacy Enhancement and Quantization in Federated Learning
Natalie Lang
Elad Sofer
Tomer Shaked
Nir Shlezinger
FedML
34
46
0
23 Aug 2022
MUDGUARD: Taming Malicious Majorities in Federated Learning using Privacy-Preserving Byzantine-Robust Clustering
Rui Wang
Xingkai Wang
H. Chen
Jérémie Decouchant
S. Picek
Ziqiang Liu
K. Liang
36
1
0
22 Aug 2022
Practical Vertical Federated Learning with Unsupervised Representation Learning
Zhaomin Wu
Yue Liu
Bingsheng He
FedML
30
37
0
13 Aug 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
51
59
0
02 Aug 2022
Fundamental Limits of Communication Efficiency for Model Aggregation in Distributed Learning: A Rate-Distortion Approach
Naifu Zhang
M. Tao
Jia Wang
Fan Xu
11
13
0
28 Jun 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
24
12
0
13 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
31
46
0
08 Jun 2022
Communication-Efficient Distributionally Robust Decentralized Learning
Matteo Zecchin
Marios Kountouris
David Gesbert
20
9
0
31 May 2022
Efficient-Adam: Communication-Efficient Distributed Adam
Congliang Chen
Li Shen
Wei Liu
Zhi-Quan Luo
25
19
0
28 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
27
10
0
08 May 2022
Communication-Efficient Adaptive Federated Learning
Yujia Wang
Lu Lin
Jinghui Chen
FedML
24
71
0
05 May 2022
FedVQCS: Federated Learning via Vector Quantized Compressed Sensing
Yong-Nam Oh
Yo-Seb Jeon
Mingzhe Chen
Walid Saad
FedML
22
10
0
16 Apr 2022
Enabling All In-Edge Deep Learning: A Literature Review
Praveen Joshi
Mohammed Hasanuzzaman
Chandra Thapa
Haithem Afli
T. Scully
28
22
0
07 Apr 2022
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
17
12
0
06 Apr 2022
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
DD
FedML
37
38
0
04 Apr 2022
Over-the-Air Federated Learning via Second-Order Optimization
Peng Yang
Yuning Jiang
Ting Wang
Yong Zhou
Yuanming Shi
Colin N. Jones
45
28
0
29 Mar 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
24
20
0
12 Feb 2022
SignSGD: Fault-Tolerance to Blind and Byzantine Adversaries
J. Akoun
S. Meyer
AAML
FedML
14
1
0
04 Feb 2022
Recycling Model Updates in Federated Learning: Are Gradient Subspaces Low-Rank?
Sheikh Shams Azam
Seyyedali Hosseinalipour
Qiang Qiu
Christopher G. Brinton
FedML
20
20
0
01 Feb 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
31
8
0
09 Jan 2022
Accurate Neural Training with 4-bit Matrix Multiplications at Standard Formats
Brian Chmiel
Ron Banner
Elad Hoffer
Hilla Ben Yaacov
Daniel Soudry
MQ
25
22
0
19 Dec 2021
Federated Two-stage Learning with Sign-based Voting
Zichen Ma
Zihan Lu
Yu Lu
Wenye Li
Jinfeng Yi
Shuguang Cui
FedML
33
2
0
10 Dec 2021
Communication-Efficient Distributed Learning via Sparse and Adaptive Stochastic Gradient
Xiaoge Deng
Dongsheng Li
Tao Sun
Xicheng Lu
FedML
26
0
0
08 Dec 2021
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
26
5
0
01 Dec 2021
Communication-Efficient Federated Learning via Quantized Compressed Sensing
Yong-Nam Oh
Namyoon Lee
Yo-Seb Jeon
H. Vincent Poor
FedML
MQ
22
34
0
30 Nov 2021
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
Khaled B. Letaief
Yuanming Shi
Jianmin Lu
Jianhua Lu
34
416
0
24 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
27
14
0
01 Nov 2021
BEV-SGD: Best Effort Voting SGD for Analog Aggregation Based Federated Learning against Byzantine Attackers
Xin-Yue Fan
Yue Wang
Yan Huo
Zhi Tian
FedML
22
23
0
18 Oct 2021
Leveraging Spatial and Temporal Correlations in Sparsified Mean Estimation
Divyansh Jhunjhunwala
Ankur Mallick
Advait Gadhikar
S. Kadhe
Gauri Joshi
16
10
0
14 Oct 2021
Previous
1
2
3
4
Next