Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04412
Cited By
Efficient Exploration through Bayesian Deep Q-Networks
13 February 2018
Kamyar Azizzadenesheli
Anima Anandkumar
OffRL
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Exploration through Bayesian Deep Q-Networks"
39 / 39 papers shown
Title
Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning
Yongshuai Liu
Xin Liu
98
1
0
26 Mar 2025
Spatial-aware decision-making with ring attractors in reinforcement learning systems
Marcos Negre Saura
Richard Allmendinger
Theodore Papamarkou
Wei Pan
235
0
0
17 Feb 2025
EVaDE : Event-Based Variational Thompson Sampling for Model-Based Reinforcement Learning
Siddharth Aravindan
Dixant Mittal
Wee Sun Lee
BDL
79
0
0
17 Jan 2025
Multi-Agent Probabilistic Ensembles with Trajectory Sampling for Connected Autonomous Vehicles
Ruoqi Wen
Jiahao Huang
Rongpeng Li
Guoru Ding
Zhifeng Zhao
42
1
0
21 Dec 2023
Uncertainty-aware transfer across tasks using hybrid model-based successor feature reinforcement learning
Parvin Malekzadeh
Ming Hou
Konstantinos N. Plataniotis
51
1
0
16 Oct 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
30
20
0
29 May 2023
Learning How to Infer Partial MDPs for In-Context Adaptation and Exploration
Chentian Jiang
Nan Rosemary Ke
Hado van Hasselt
16
3
0
08 Feb 2023
POEM: Out-of-Distribution Detection with Posterior Sampling
Yifei Ming
Ying Fan
Yixuan Li
OODD
39
114
0
28 Jun 2022
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses
D. Tiapkin
Denis Belomestny
Eric Moulines
A. Naumov
S. Samsonov
Yunhao Tang
Michal Valko
Pierre Menard
34
17
0
16 May 2022
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning
Chenjia Bai
Lingxiao Wang
Zhuoran Yang
Zhihong Deng
Animesh Garg
Peng Liu
Zhaoran Wang
OffRL
45
132
0
23 Feb 2022
Fast online inference for nonlinear contextual bandit based on Generative Adversarial Network
Yun-Da Tsai
Shou-De Lin
51
5
0
17 Feb 2022
Which Model to Trust: Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms for Continuous Control Tasks
Giacomo Arcieri
David Wölfle
Eleni Chatzi
OffRL
27
5
0
25 Oct 2021
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
41
93
0
14 Sep 2021
A Survey of Exploration Methods in Reinforcement Learning
Susan Amin
Maziar Gomrokchi
Harsh Satija
H. V. Hoof
Doina Precup
OffRL
37
80
0
01 Sep 2021
On the Sample Complexity and Metastability of Heavy-tailed Policy Search in Continuous Control
Amrit Singh Bedi
Anjaly Parayil
Junyu Zhang
Mengdi Wang
Alec Koppel
38
15
0
15 Jun 2021
Principled Exploration via Optimistic Bootstrapping and Backward Induction
Chenjia Bai
Lingxiao Wang
Lei Han
Jianye Hao
Animesh Garg
Peng Liu
Zhaoran Wang
OffRL
21
38
0
13 May 2021
Meta-Learning-Based Robust Adaptive Flight Control Under Uncertain Wind Conditions
Michael O'Connell
Guanya Shi
Xichen Shi
Soon-Jo Chung
31
22
0
02 Mar 2021
COMBO: Conservative Offline Model-Based Policy Optimization
Tianhe Yu
Aviral Kumar
Rafael Rafailov
Aravind Rajeswaran
Sergey Levine
Chelsea Finn
OffRL
222
419
0
16 Feb 2021
Online Limited Memory Neural-Linear Bandits with Likelihood Matching
Ofir Nabati
Tom Zahavy
Shie Mannor
27
18
0
07 Feb 2021
Regret Bounds for Adaptive Nonlinear Control
Nicholas M. Boffi
Stephen Tu
Jean-Jacques E. Slotine
41
47
0
26 Nov 2020
Model-based Reinforcement Learning for Continuous Control with Posterior Sampling
Ying Fan
Yifei Ming
33
17
0
20 Nov 2020
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
34
115
0
02 Oct 2020
Deep Reinforcement Learning for Efficient Measurement of Quantum Devices
Vu-Linh Nguyen
S. B. Orbell
D. Lennon
H. Moon
F. Vigneau
...
D. Zumbuhl
G. Briggs
Michael A. Osborne
D. Sejdinovic
N. Ares
30
39
0
30 Sep 2020
Accelerating Reinforcement Learning Agent with EEG-based Implicit Human Feedback
Duo Xu
Mohit Agarwal
Ekansh Gupta
Faramarz Fekri
Raghupathy Sivakumar
OffRL
30
11
0
30 Jun 2020
Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou
Lihong Li
Quanquan Gu
36
15
0
11 Nov 2019
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
52
541
0
11 Jul 2019
RadGrad: Active learning with loss gradients
Paul Budnarain
Renato Ferreira Pinto Junior
Ilan Kogan
27
3
0
18 Jun 2019
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
27
8
0
10 Jun 2019
Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound
Lin F. Yang
Mengdi Wang
OffRL
GP
26
283
0
24 May 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
30
96
0
23 May 2019
Deep Neural Linear Bandits: Overcoming Catastrophic Forgetting through Likelihood Matching
Tom Zahavy
Shie Mannor
HAI
36
30
0
24 Jan 2019
Bayesian Reinforcement Learning in Factored POMDPs
Sammie Katt
F. Oliehoek
Chris Amato
20
39
0
14 Nov 2018
Meta-Learning Priors for Efficient Online Bayesian Regression
James Harrison
Apoorva Sharma
Marco Pavone
BDL
27
99
0
24 Jul 2018
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
21
372
0
08 Jun 2018
Fast Exploration with Simplified Models and Approximately Optimistic Planning in Model Based Reinforcement Learning
Ramtin Keramati
Jay Whang
Patrick Cho
Emma Brunskill
OffRL
26
7
0
01 Jun 2018
Exploration by Distributional Reinforcement Learning
Yunhao Tang
Shipra Agrawal
OOD
41
30
0
04 May 2018
Policy Search in Continuous Action Domains: an Overview
Olivier Sigaud
F. Stulp
16
72
0
13 Mar 2018
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
41
300
0
22 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1