ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03799
19
18

Online Limited Memory Neural-Linear Bandits with Likelihood Matching

7 February 2021
Ofir Nabati
Tom Zahavy
Shie Mannor
ArXivPDFHTML
Abstract

We study neural-linear bandits for solving problems where {\em both} exploration and representation learning play an important role. Neural-linear bandits harnesses the representation power of Deep Neural Networks (DNNs) and combines it with efficient exploration mechanisms by leveraging uncertainty estimation of the model, designed for linear contextual bandits on top of the last hidden layer. In order to mitigate the problem of representation change during the process, new uncertainty estimations are computed using stored data from an unlimited buffer. Nevertheless, when the amount of stored data is limited, a phenomenon called catastrophic forgetting emerges. To alleviate this, we propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online. We applied our algorithm, Limited Memory Neural-Linear with Likelihood Matching (NeuralLinear-LiM2) on a variety of datasets and observed that our algorithm achieves comparable performance to the unlimited memory approach while exhibits resilience to catastrophic forgetting.

View on arXiv
Comments on this paper