Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.03685
Cited By
Learning a SAT Solver from Single-Bit Supervision
11 February 2018
Daniel Selsam
Matthew Lamm
Benedikt Bünz
Percy Liang
L. D. Moura
D. Dill
NAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning a SAT Solver from Single-Bit Supervision"
50 / 101 papers shown
Title
Repetition Makes Perfect: Recurrent Sum-GNNs Match Message Passing Limit
Eran Rosenbluth
Martin Grohe
26
1
0
01 May 2025
MLGym: A New Framework and Benchmark for Advancing AI Research Agents
Deepak Nathani
Lovish Madaan
Nicholas Roberts
Nikolay Bashlykov
Ajay Menon
...
Tatiana Shavrina
Jakob Foerster
Yoram Bachrach
William Yang Wang
Roberta Raileanu
LLMAG
88
8
0
21 Feb 2025
Towards graph neural networks for provably solving convex optimization problems
Chendi Qian
Christopher Morris
54
0
0
04 Feb 2025
LinSATNet: The Positive Linear Satisfiability Neural Networks
Runzhong Wang
Yunhao Zhang
Ziao Guo
Tianyi Chen
Xiaokang Yang
Junchi Yan
32
16
0
18 Jul 2024
Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization
S. Reifenstein
T. Leleu
Yoshihisa Yamamoto
48
1
0
02 May 2024
A Short Review on Novel Approaches for Maximum Clique Problem: from Classical algorithms to Graph Neural Networks and Quantum algorithms
Raffaele Marino
L. Buffoni
Bogdan Zavalnij
GNN
40
5
0
13 Mar 2024
AutoSAT: Automatically Optimize SAT Solvers via Large Language Models
Yiwen Sun
Xianyin Zhang
Shiyu Huang
Shaowei Cai
Bing-Zhen Zhang
Ke Wei
32
2
0
16 Feb 2024
NN-Steiner: A Mixed Neural-algorithmic Approach for the Rectilinear Steiner Minimum Tree Problem
Andrew B. Kahng
Robert Nerem
Yusu Wang
Chien-Yi Yang
25
5
0
17 Dec 2023
Equivariant Deep Weight Space Alignment
Aviv Navon
Aviv Shamsian
Ethan Fetaya
Gal Chechik
Nadav Dym
Haggai Maron
33
21
0
20 Oct 2023
Machine Learning for SAT: Restricted Heuristics and New Graph Representations
Mikhail Shirokikh
Ilya Shenbin
Anton M. Alekseev
Sergey I. Nikolenko
NAI
18
0
0
18 Jul 2023
Injecting Logical Constraints into Neural Networks via Straight-Through Estimators
Zhun Yang
Joohyung Lee
Chi-youn Park
25
19
0
10 Jul 2023
TreeDQN: Learning to minimize Branch-and-Bound tree
Dmitry Sorokin
A. Kostin
16
1
0
09 Jun 2023
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets
Dinghuai Zhang
H. Dai
Nikolay Malkin
Aaron Courville
Yoshua Bengio
L. Pan
30
36
0
26 May 2023
Neural Algorithmic Reasoning with Causal Regularisation
Beatrice Bevilacqua
Kyriacos Nikiforou
Borja Ibarz
Ioana Bica
Michela Paganini
Charles Blundell
Jovana Mitrović
Petar Velivcković
OOD
CML
NAI
41
26
0
20 Feb 2023
Lightsolver challenges a leading deep learning solver for Max-2-SAT problems
Hod Wirzberger
Assaf Kalinski
Idan Meirzada
H. Primack
Yaniv Romano
Chene Tradonsky
Ruti Ben-shlomi
13
1
0
14 Feb 2023
Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
Haotian Ju
Dongyue Li
Aneesh Sharma
Hongyang R. Zhang
31
40
0
09 Feb 2023
HardSATGEN: Understanding the Difficulty of Hard SAT Formula Generation and A Strong Structure-Hardness-Aware Baseline
Yongqian Li
Xinyan Chen
Wenxuan Guo
Xijun Li
Wanqian Luo
Jun Huang
Hui-Ling Zhen
M. Yuan
Junchi Yan
35
17
0
04 Feb 2023
Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning
Taoan Huang
Aaron Ferber
Yuandong Tian
B. Dilkina
Benoit Steiner
47
22
0
03 Feb 2023
Transformers Meet Directed Graphs
Simon Geisler
Yujia Li
D. Mankowitz
A. Cemgil
Stephan Günnemann
Cosmin Paduraru
29
36
0
31 Jan 2023
Learning Graph Algorithms With Recurrent Graph Neural Networks
Florian Grötschla
Joël Mathys
Roger Wattenhofer
GNN
19
6
0
09 Dec 2022
Denoising Diffusion for Sampling SAT Solutions
Kārlis Freivalds
Sergejs Kozlovics
16
2
0
30 Nov 2022
Arbitrarily Large Labelled Random Satisfiability Formulas for Machine Learning Training
D. Achlioptas
Amrit Daswaney
Periklis A. Papakonstantinou
NAI
BDL
17
0
0
21 Nov 2022
NSNet: A General Neural Probabilistic Framework for Satisfiability Problems
Zhaoyu Li
X. Si
BDL
NAI
17
10
0
07 Nov 2022
A Survey on Influence Maximization: From an ML-Based Combinatorial Optimization
Yandi Li
Haobo Gao
Yunxuan Gao
Jianxiong Guo
Weili Wu
27
38
0
06 Nov 2022
Learning Feasibility of Factored Nonlinear Programs in Robotic Manipulation Planning
Joaquim Ortiz de Haro
Jung-Su Ha
Danny Driess
E. Karpas
Marc Toussaint
32
2
0
22 Oct 2022
Graphically Structured Diffusion Models
Christian D. Weilbach
William Harvey
Frank Wood
DiffM
35
7
0
20 Oct 2022
A Solver-Free Framework for Scalable Learning in Neural ILP Architectures
Yatin Nandwani
Rishabh Ranjan
Mausam
Parag Singla
33
7
0
17 Oct 2022
A Neural Network-based SAT-Resilient Obfuscation Towards Enhanced Logic Locking
Rakibul Hassan
Gaurav Kolhe
S. Rafatirad
Houman Homayoun
Sai Manoj P D
AAML
16
8
0
13 Sep 2022
Structured Q-learning For Antibody Design
Alexander I. Cowen-Rivers
P. Gorinski
Aivar Sootla
Asif R. Khan
Liu Furui
Jun Wang
Jan Peters
H. Ammar
OffRL
OnRL
32
3
0
10 Sep 2022
SATformer: Transformer-Based UNSAT Core Learning
Zhengyuan Shi
Min Li
Yi Liu
Sadaf Khan
Junhua Huang
Hui-Ling Zhen
M. Yuan
Qiang Xu
NAI
21
7
0
02 Sep 2022
One Model, Any CSP: Graph Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction
Jan Tonshoff
Berke Kisin
Jakob Lindner
Martin Grohe
GNN
24
22
0
22 Aug 2022
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
Shivam Garg
Dimitris Tsipras
Percy Liang
Gregory Valiant
39
459
0
01 Aug 2022
OCTAL: Graph Representation Learning for LTL Model Checking
Prasita Mukherjee
Haoteng Yin
Susheel Suresh
Tiark Rompf
27
4
0
24 Jul 2022
Annealed Training for Combinatorial Optimization on Graphs
Haoran Sun
E. Guha
H. Dai
32
18
0
23 Jul 2022
Unsupervised Learning for Combinatorial Optimization with Principled Objective Relaxation
Haoyu Wang
Nan Wu
Hang Yang
Cong Hao
Pan Li
39
30
0
13 Jul 2022
Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set
Maria Chiara Angelini
F. Ricci-Tersenghi
GNN
AI4CE
19
32
0
27 Jun 2022
DeepSAT: An EDA-Driven Learning Framework for SAT
Min Li
Zhengyuan Shi
Qiuxia Lai
Sadaf Khan
Shaowei Cai
Qiang Xu
17
11
0
27 May 2022
DOGE-Train: Discrete Optimization on GPU with End-to-end Training
Ahmed Abbas
Paul Swoboda
38
6
0
23 May 2022
On the Paradox of Learning to Reason from Data
Honghua Zhang
Liunian Harold Li
Tao Meng
Kai-Wei Chang
Mathias Niepert
NAI
ReLM
OOD
LRM
140
104
0
23 May 2022
Graph Neural Networks for Propositional Model Counting
Gaia Saveri
Luca Bortolussi
NAI
LRM
21
2
0
09 May 2022
Approximating Permutations with Neural Network Components for Travelling Photographer Problem
S. Chong
12
0
0
30 Apr 2022
End-to-end Algorithm Synthesis with Recurrent Networks: Logical Extrapolation Without Overthinking
Arpit Bansal
Avi Schwarzschild
Eitan Borgnia
Z. Emam
Furong Huang
Micah Goldblum
Tom Goldstein
LRM
19
24
0
11 Feb 2022
Formal Mathematics Statement Curriculum Learning
Stanislas Polu
Jesse Michael Han
Kunhao Zheng
Mantas Baksys
Igor Babuschkin
Ilya Sutskever
AIMat
91
118
0
03 Feb 2022
Learning to Reformulate for Linear Programming
Xijun Li
Qingyu Qu
Fangzhou Zhu
Jia Zeng
Mingxuan Yuan
K. Mao
Jie Wang
22
12
0
17 Jan 2022
Pushing the Limits of Rule Reasoning in Transformers through Natural Language Satisfiability
Kyle Richardson
Ashish Sabharwal
ReLM
LRM
35
24
0
16 Dec 2021
DeepGate: Learning Neural Representations of Logic Gates
Min Li
Sadaf Khan
Zhengyuan Shi
Naixing Wang
Yu Huang
Qiang Xu
GNN
NAI
AI4CE
26
41
0
26 Nov 2021
NeuroBack: Improving CDCL SAT Solving using Graph Neural Networks
Wenxi Wang
Yang Hu
Mohit Tiwari
S. Khurshid
K. McMillan
Risto Miikkulainen
GNN
NAI
22
6
0
26 Oct 2021
Generating Symbolic Reasoning Problems with Transformer GANs
Jens U. Kreber
Christopher Hahn
AI4CE
30
6
0
19 Oct 2021
Asymmetric Graph Representation Learning
Zhuo Tan
B. Liu
Guosheng Yin
24
1
0
14 Oct 2021
Link Scheduling using Graph Neural Networks
Zhongyuan Zhao
Gunjan Verma
Chirag R. Rao
A. Swami
Santiago Segarra
GNN
27
34
0
12 Sep 2021
1
2
3
Next