Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.03620
Cited By
Optimal approximation of continuous functions by very deep ReLU networks
10 February 2018
Dmitry Yarotsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal approximation of continuous functions by very deep ReLU networks"
50 / 188 papers shown
Title
Wasserstein Generative Learning of Conditional Distribution
Shiao Liu
Xingyu Zhou
Yuling Jiao
Jian Huang
GAN
22
21
0
19 Dec 2021
Plant ñ' Seek: Can You Find the Winning Ticket?
Jonas Fischer
R. Burkholz
19
21
0
22 Nov 2021
On the Existence of Universal Lottery Tickets
R. Burkholz
Nilanjana Laha
Rajarshi Mukherjee
Alkis Gotovos
UQCV
18
32
0
22 Nov 2021
Deep Network Approximation in Terms of Intrinsic Parameters
Zuowei Shen
Haizhao Yang
Shijun Zhang
21
9
0
15 Nov 2021
Deep Learning in High Dimension: Neural Network Approximation of Analytic Functions in
L
2
(
R
d
,
γ
d
)
L^2(\mathbb{R}^d,γ_d)
L
2
(
R
d
,
γ
d
)
Christoph Schwab
Jakob Zech
14
3
0
13 Nov 2021
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
25
152
0
09 Oct 2021
Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows
Michael Puthawala
Matti Lassas
Ivan Dokmanić
Maarten V. de Hoop
15
13
0
08 Oct 2021
Robust Nonparametric Regression with Deep Neural Networks
Guohao Shen
Yuling Jiao
Yuanyuan Lin
Jian Huang
OOD
33
13
0
21 Jul 2021
Inverse Problem of Nonlinear Schrödinger Equation as Learning of Convolutional Neural Network
Yiran Wang
Zhen Li
23
2
0
19 Jul 2021
Deep Quantile Regression: Mitigating the Curse of Dimensionality Through Composition
Guohao Shen
Yuling Jiao
Yuanyuan Lin
J. Horowitz
Jian Huang
91
23
0
10 Jul 2021
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
56
36
0
06 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
32
43
0
04 Jul 2021
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
Ziang Chen
Jianfeng Lu
Yulong Lu
38
26
0
14 Jun 2021
Solving PDEs on Unknown Manifolds with Machine Learning
Senwei Liang
Shixiao W. Jiang
J. Harlim
Haizhao Yang
AI4CE
42
16
0
12 Jun 2021
Sparsity-Probe: Analysis tool for Deep Learning Models
Ido Ben-Shaul
S. Dekel
21
4
0
14 May 2021
Non-asymptotic Excess Risk Bounds for Classification with Deep Convolutional Neural Networks
Guohao Shen
Yuling Jiao
Yuanyuan Lin
Jian Huang
11
3
0
01 May 2021
Automatic Debiased Machine Learning via Riesz Regression
Victor Chernozhukov
Whitney Newey
Victor Quintas-Martinez
Vasilis Syrgkanis
OOD
CML
17
4
0
30 Apr 2021
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
26
138
0
18 Apr 2021
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
36
50
0
14 Apr 2021
Proof of the Theory-to-Practice Gap in Deep Learning via Sampling Complexity bounds for Neural Network Approximation Spaces
Philipp Grohs
F. Voigtlaender
16
34
0
06 Apr 2021
Approximating Probability Distributions by using Wasserstein Generative Adversarial Networks
Yihang Gao
Michael K. Ng
Mingjie Zhou
GAN
14
0
0
18 Mar 2021
Evolutional Deep Neural Network
Yifan Du
T. Zaki
29
68
0
18 Mar 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
103
115
0
28 Feb 2021
Size and Depth Separation in Approximating Benign Functions with Neural Networks
Gal Vardi
Daniel Reichman
T. Pitassi
Ohad Shamir
28
7
0
30 Jan 2021
On the capacity of deep generative networks for approximating distributions
Yunfei Yang
Zhen Li
Yang Wang
17
28
0
29 Jan 2021
Partition of unity networks: deep hp-approximation
Kookjin Lee
N. Trask
Ravi G. Patel
Mamikon A. Gulian
E. Cyr
22
30
0
27 Jan 2021
Deep neural network surrogates for non-smooth quantities of interest in shape uncertainty quantification
L. Scarabosio
16
9
0
18 Jan 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Equations
Jianfeng Lu
Yulong Lu
Min Wang
36
37
0
05 Jan 2021
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
36
29
0
11 Dec 2020
Parametric Flatten-T Swish: An Adaptive Non-linear Activation Function For Deep Learning
Hock Hung Chieng
Noorhaniza Wahid
P. Ong
21
6
0
06 Nov 2020
On the rate of convergence of a deep recurrent neural network estimate in a regression problem with dependent data
Michael Kohler
A. Krzyżak
8
12
0
31 Oct 2020
Learning Sub-Patterns in Piecewise Continuous Functions
Anastasis Kratsios
Behnoosh Zamanlooy
22
10
0
29 Oct 2020
Deep Learning for Individual Heterogeneity
M. Farrell
Tengyuan Liang
S. Misra
BDL
29
17
0
28 Oct 2020
Provable Memorization via Deep Neural Networks using Sub-linear Parameters
Sejun Park
Jaeho Lee
Chulhee Yun
Jinwoo Shin
FedML
MDE
25
36
0
26 Oct 2020
Neural Network Approximation: Three Hidden Layers Are Enough
Zuowei Shen
Haizhao Yang
Shijun Zhang
30
115
0
25 Oct 2020
Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities
C. Marcati
J. Opschoor
P. Petersen
Christoph Schwab
16
29
0
23 Oct 2020
Theoretical Analysis of the Advantage of Deepening Neural Networks
Yasushi Esaki
Yuta Nakahara
Toshiyasu Matsushima
12
0
0
24 Sep 2020
A deep network construction that adapts to intrinsic dimensionality beyond the domain
A. Cloninger
T. Klock
AI4CE
11
14
0
06 Aug 2020
The Kolmogorov-Arnold representation theorem revisited
Johannes Schmidt-Hieber
30
125
0
31 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Maximum-and-Concatenation Networks
Xingyu Xie
Hao Kong
Jianlong Wu
Wayne Zhang
Guangcan Liu
Zhouchen Lin
83
2
0
09 Jul 2020
Approximation Theory of Tree Tensor Networks: Tensorized Univariate Functions -- Part I
Mazen Ali
A. Nouy
8
12
0
30 Jun 2020
Deep Network with Approximation Error Being Reciprocal of Width to Power of Square Root of Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
6
7
0
22 Jun 2020
Sharp Representation Theorems for ReLU Networks with Precise Dependence on Depth
Guy Bresler
Dheeraj M. Nagaraj
11
21
0
07 Jun 2020
Approximation in shift-invariant spaces with deep ReLU neural networks
Yunfei Yang
Zhen Li
Yang Wang
34
14
0
25 May 2020
Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks
Moritz Geist
P. Petersen
Mones Raslan
R. Schneider
Gitta Kutyniok
35
83
0
25 Apr 2020
A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions
Yulong Lu
Jianfeng Lu
18
19
0
19 Apr 2020
The gap between theory and practice in function approximation with deep neural networks
Ben Adcock
N. Dexter
20
93
0
16 Jan 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
67
247
0
09 Jan 2020
Previous
1
2
3
4
Next