Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.03620
Cited By
v1
v2 (latest)
Optimal approximation of continuous functions by very deep ReLU networks
10 February 2018
Dmitry Yarotsky
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimal approximation of continuous functions by very deep ReLU networks"
50 / 188 papers shown
Title
On Universality Classes of Equivariant Networks
Marco Pacini
G. Santin
Bruno Lepri
Shubhendu Trivedi
32
0
0
02 Jun 2025
Approximation theory for 1-Lipschitz ResNets
Davide Murari
Takashi Furuya
Carola-Bibiane Schönlieb
84
0
0
17 May 2025
Contextures: Representations from Contexts
Runtian Zhai
Kai Yang
Che-Ping Tsai
Burak Varici
Zico Kolter
Pradeep Ravikumar
447
0
0
02 May 2025
Kolmogorov-Arnold Networks: Approximation and Learning Guarantees for Functions and their Derivatives
Anastasis Kratsios
Takashi Furuya
72
1
0
21 Apr 2025
Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
Yuling Jiao
Yanming Lai
Yang Wang
Bokai Yan
62
0
0
18 Apr 2025
Inferring Outcome Means of Exponential Family Distributions Estimated by Deep Neural Networks
Xuran Meng
Yi Li
BDL
69
0
0
12 Apr 2025
Statistically guided deep learning
Michael Kohler
A. Krzyżak
ODL
BDL
174
0
0
11 Apr 2025
Minimum width for universal approximation using squashable activation functions
Jonghyun Shin
Namjun Kim
Geonho Hwang
Sejun Park
67
0
0
10 Apr 2025
Nonlocal techniques for the analysis of deep ReLU neural network approximations
Cornelia Schneider
Mario Ullrich
Jan Vybiral
119
0
0
07 Apr 2025
Approximation properties of neural ODEs
Arturo De Marinis
Davide Murari
E. Celledoni
Nicola Guglielmi
B. Owren
Francesco Tudisco
78
1
0
19 Mar 2025
Bi-Lipschitz Ansatz for Anti-Symmetric Functions
Nadav Dym
Jianfeng Lu
Matan Mizrachi
109
1
0
06 Mar 2025
Fourier Multi-Component and Multi-Layer Neural Networks: Unlocking High-Frequency Potential
Shijun Zhang
Hongkai Zhao
Yimin Zhong
Haomin Zhou
95
0
0
26 Feb 2025
Curse of Dimensionality in Neural Network Optimization
Sanghoon Na
Haizhao Yang
89
0
0
07 Feb 2025
Theoretical Analysis of Learned Database Operations under Distribution Shift through Distribution Learnability
Sepanta Zeighami
Cyrus Shahahbi
93
1
0
09 Nov 2024
On Expressive Power of Looped Transformers: Theoretical Analysis and Enhancement via Timestep Encoding
Kevin Xu
Issei Sato
126
4
0
02 Oct 2024
On the expressiveness and spectral bias of KANs
Yixuan Wang
Jonathan W. Siegel
Ziming Liu
Thomas Y. Hou
119
13
0
02 Oct 2024
Approximation Bounds for Recurrent Neural Networks with Application to Regression
Yuling Jiao
Yang Wang
Bokai Yan
58
1
0
09 Sep 2024
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
Yunfei Yang
106
2
0
02 Sep 2024
Deep Limit Model-free Prediction in Regression
Kejin Wu
D. Politis
OOD
51
0
0
18 Aug 2024
Structured and Balanced Multi-Component and Multi-Layer Neural Networks
Shijun Zhang
Hongkai Zhao
Yimin Zhong
Haomin Zhou
104
1
0
30 Jun 2024
1-Lipschitz Neural Distance Fields
Guillaume Coiffier
Louis Bethune
114
4
0
14 Jun 2024
Enhancing Learning with Label Differential Privacy by Vector Approximation
Puning Zhao
Rongfei Fan
Huiwen Wu
Qingming Li
Xiaogang Xu
Zhe Liu
92
2
0
24 May 2024
Consistency of Neural Causal Partial Identification
Jiyuan Tan
Jose Blanchet
Vasilis Syrgkanis
CML
111
0
0
24 May 2024
Deep Ridgelet Transform and Unified Universality Theorem for Deep and Shallow Joint-Group-Equivariant Machines
Sho Sonoda
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
82
1
0
22 May 2024
Approximation and Gradient Descent Training with Neural Networks
G. Welper
64
1
0
19 May 2024
Geometry-Aware Instrumental Variable Regression
Heiner Kremer
Bernhard Schölkopf
85
0
0
19 May 2024
Error Analysis of Three-Layer Neural Network Trained with PGD for Deep Ritz Method
Yuling Jiao
Yanming Lai
Yang Wang
AI4CE
45
1
0
19 May 2024
Scalable Subsampling Inference for Deep Neural Networks
Kejin Wu
D. Politis
63
1
0
14 May 2024
Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces
Owen Davis
Gianluca Geraci
Mohammad Motamed
70
2
0
10 May 2024
Generative adversarial learning with optimal input dimension and its adaptive generator architecture
Zhiyao Tan
Ling Zhou
Huazhen Lin
GAN
74
1
0
06 May 2024
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
Anastasis Kratsios
Takashi Furuya
Jose Antonio Lara Benitez
Matti Lassas
Maarten V. de Hoop
90
14
0
13 Apr 2024
An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Minshuo Chen
Song Mei
Jianqing Fan
Mengdi Wang
VLM
MedIm
DiffM
124
59
0
11 Apr 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
61
4
0
04 Apr 2024
On the rates of convergence for learning with convolutional neural networks
Yunfei Yang
Han Feng
Ding-Xuan Zhou
122
3
0
25 Mar 2024
Depth Separation in Norm-Bounded Infinite-Width Neural Networks
Suzanna Parkinson
Greg Ongie
Rebecca Willett
Ohad Shamir
Nathan Srebro
MDE
82
3
0
13 Feb 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
150
1
0
05 Feb 2024
Expressive Power of ReLU and Step Networks under Floating-Point Operations
Yeachan Park
Geonho Hwang
Wonyeol Lee
Sejun Park
36
2
0
26 Jan 2024
Do stable neural networks exist for classification problems? -- A new view on stability in AI
Z. N. D. Liu
A. C. Hansen
74
0
0
15 Jan 2024
Semi-Supervised Deep Sobolev Regression: Estimation and Variable Selection by ReQU Neural Network
Zhao Ding
Chenguang Duan
Yuling Jiao
Jerry Zhijian Yang
57
1
0
09 Jan 2024
Nonlinear functional regression by functional deep neural network with kernel embedding
Zhongjie Shi
Jun Fan
Linhao Song
Ding-Xuan Zhou
Johan A. K. Suykens
504
5
0
05 Jan 2024
Deep Neural Networks and Finite Elements of Any Order on Arbitrary Dimensions
Juncai He
Jinchao Xu
117
8
0
21 Dec 2023
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
96
1
0
19 Dec 2023
Deep State-Space Model for Predicting Cryptocurrency Price
Shalini Sharma
A. Majumdar
Émilie Chouzenoux
Victor Elvira
71
0
0
21 Nov 2023
Statistical learning by sparse deep neural networks
Felix Abramovich
BDL
79
1
0
15 Nov 2023
Approximating Langevin Monte Carlo with ResNet-like Neural Network architectures
Charles Miranda
Janina Enrica Schutte
David Sommer
Martin Eigel
80
3
0
06 Nov 2023
Transformers Can Solve Non-Linear and Non-Markovian Filtering Problems in Continuous Time For Conditionally Gaussian Signals
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
97
1
0
30 Oct 2023
Efficient kernel surrogates for neural network-based regression
S. Qadeer
A. Engel
Amanda A. Howard
Adam Tsou
Max Vargas
P. Stinis
Tony Chiang
114
5
0
28 Oct 2023
Deep Ridgelet Transform: Voice with Koopman Operator Proves Universality of Formal Deep Networks
Sho Sonoda
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
74
3
0
05 Oct 2023
Spectral Neural Networks: Approximation Theory and Optimization Landscape
Chenghui Li
Rishi Sonthalia
Nicolas García Trillos
85
1
0
01 Oct 2023
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim
Chanho Min
Sejun Park
VLM
66
10
0
19 Sep 2023
1
2
3
4
Next