Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.03620
Cited By
Optimal approximation of continuous functions by very deep ReLU networks
10 February 2018
Dmitry Yarotsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal approximation of continuous functions by very deep ReLU networks"
50 / 188 papers shown
Title
Approximation theory for 1-Lipschitz ResNets
Davide Murari
Takashi Furuya
Carola-Bibiane Schönlieb
2
0
0
17 May 2025
Contextures: Representations from Contexts
Runtian Zhai
Kai Yang
Che-Ping Tsai
Burak Varici
Zico Kolter
Pradeep Ravikumar
125
0
0
02 May 2025
Kolmogorov-Arnold Networks: Approximation and Learning Guarantees for Functions and their Derivatives
Anastasis Kratsios
Takashi Furuya
29
0
0
21 Apr 2025
Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
Yuling Jiao
Yanming Lai
Yang Wang
Bokai Yan
39
0
0
18 Apr 2025
Inferring Outcome Means of Exponential Family Distributions Estimated by Deep Neural Networks
Xuran Meng
Yi Li
BDL
32
0
0
12 Apr 2025
Statistically guided deep learning
Michael Kohler
A. Krzyżak
ODL
BDL
79
0
0
11 Apr 2025
Minimum width for universal approximation using squashable activation functions
Jonghyun Shin
Namjun Kim
Geonho Hwang
Sejun Park
38
0
0
10 Apr 2025
Nonlocal techniques for the analysis of deep ReLU neural network approximations
Cornelia Schneider
Mario Ullrich
Jan Vybiral
18
0
0
07 Apr 2025
Approximation properties of neural ODEs
Arturo De Marinis
Davide Murari
E. Celledoni
Nicola Guglielmi
B. Owren
Francesco Tudisco
44
1
0
19 Mar 2025
Bi-Lipschitz Ansatz for Anti-Symmetric Functions
Nadav Dym
Jianfeng Lu
Matan Mizrachi
40
1
0
06 Mar 2025
Fourier Multi-Component and Multi-Layer Neural Networks: Unlocking High-Frequency Potential
Shijun Zhang
Hongkai Zhao
Yimin Zhong
Haomin Zhou
57
0
0
26 Feb 2025
Curse of Dimensionality in Neural Network Optimization
Sanghoon Na
Haizhao Yang
56
0
0
07 Feb 2025
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
53
1
0
31 Dec 2024
Theoretical Analysis of Learned Database Operations under Distribution Shift through Distribution Learnability
Sepanta Zeighami
Cyrus Shahahbi
42
1
0
09 Nov 2024
Identification of Mean-Field Dynamics using Transformers
Shiba Biswal
Karthik Elamvazhuthi
Rishi Sonthalia
AI4CE
27
1
0
06 Oct 2024
On the expressiveness and spectral bias of KANs
Yixuan Wang
Jonathan W. Siegel
Ziming Liu
Thomas Y. Hou
37
10
0
02 Oct 2024
On Expressive Power of Looped Transformers: Theoretical Analysis and Enhancement via Timestep Encoding
Kevin Xu
Issei Sato
39
3
0
02 Oct 2024
Approximation Bounds for Recurrent Neural Networks with Application to Regression
Yuling Jiao
Yang Wang
Bokai Yan
23
1
0
09 Sep 2024
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
Yunfei Yang
62
2
0
02 Sep 2024
Deep Limit Model-free Prediction in Regression
Kejin Wu
D. Politis
OOD
19
0
0
18 Aug 2024
Structured and Balanced Multi-component and Multi-layer Neural Networks
Shijun Zhang
Hongkai Zhao
Yimin Zhong
Haomin Zhou
37
1
0
30 Jun 2024
1-Lipschitz Neural Distance Fields
Guillaume Coiffier
Louis Bethune
43
3
0
14 Jun 2024
Consistency of Neural Causal Partial Identification
Jiyuan Tan
Jose Blanchet
Vasilis Syrgkanis
CML
32
0
0
24 May 2024
Enhancing Learning with Label Differential Privacy by Vector Approximation
Puning Zhao
Rongfei Fan
Huiwen Wu
Qingming Li
Xiaogang Xu
Zhe Liu
36
1
0
24 May 2024
Unified Universality Theorem for Deep and Shallow Joint-Group-Equivariant Machines
Sho Sonoda
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
39
0
0
22 May 2024
Approximation and Gradient Descent Training with Neural Networks
G. Welper
38
1
0
19 May 2024
Geometry-Aware Instrumental Variable Regression
Heiner Kremer
Bernhard Schölkopf
46
0
0
19 May 2024
Scalable Subsampling Inference for Deep Neural Networks
Kejin Wu
D. Politis
19
1
0
14 May 2024
Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces
Owen Davis
Gianluca Geraci
Mohammad Motamed
46
2
0
10 May 2024
Generative adversarial learning with optimal input dimension and its adaptive generator architecture
Zhiyao Tan
Ling Zhou
Huazhen Lin
GAN
42
0
0
06 May 2024
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
Anastasis Kratsios
Takashi Furuya
Jose Antonio Lara Benitez
Matti Lassas
Maarten V. de Hoop
50
13
0
13 Apr 2024
An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Minshuo Chen
Song Mei
Jianqing Fan
Mengdi Wang
VLM
MedIm
DiffM
37
48
0
11 Apr 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
42
4
0
04 Apr 2024
On the rates of convergence for learning with convolutional neural networks
Yunfei Yang
Han Feng
Ding-Xuan Zhou
40
3
0
25 Mar 2024
Depth Separation in Norm-Bounded Infinite-Width Neural Networks
Suzanna Parkinson
Greg Ongie
Rebecca Willett
Ohad Shamir
Nathan Srebro
MDE
50
2
0
13 Feb 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Expressive Power of ReLU and Step Networks under Floating-Point Operations
Yeachan Park
Geonho Hwang
Wonyeol Lee
Sejun Park
19
2
0
26 Jan 2024
Do stable neural networks exist for classification problems? -- A new view on stability in AI
Z. N. D. Liu
A. C. Hansen
30
0
0
15 Jan 2024
Semi-Supervised Deep Sobolev Regression: Estimation and Variable Selection by ReQU Neural Network
Zhao Ding
Chenguang Duan
Yuling Jiao
Jerry Zhijian Yang
25
1
0
09 Jan 2024
Nonlinear functional regression by functional deep neural network with kernel embedding
Zhongjie Shi
Jun Fan
Linhao Song
Ding-Xuan Zhou
Johan A. K. Suykens
65
5
0
05 Jan 2024
Deep Neural Networks and Finite Elements of Any Order on Arbitrary Dimensions
Juncai He
Jinchao Xu
33
7
0
21 Dec 2023
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
29
1
0
19 Dec 2023
Deep State-Space Model for Predicting Cryptocurrency Price
Shalini Sharma
A. Majumdar
Émilie Chouzenoux
Victor Elvira
28
0
0
21 Nov 2023
Statistical learning by sparse deep neural networks
Felix Abramovich
BDL
24
1
0
15 Nov 2023
Approximating Langevin Monte Carlo with ResNet-like Neural Network architectures
Charles Miranda
Janina Enrica Schutte
David Sommer
Martin Eigel
32
3
0
06 Nov 2023
Efficient kernel surrogates for neural network-based regression
S. Qadeer
A. Engel
Amanda A. Howard
Adam Tsou
Max Vargas
P. Stinis
Tony Chiang
21
5
0
28 Oct 2023
Deep Ridgelet Transform: Voice with Koopman Operator Proves Universality of Formal Deep Networks
Sho Sonoda
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
27
3
0
05 Oct 2023
Spectral Neural Networks: Approximation Theory and Optimization Landscape
Chenghui Li
Rishi Sonthalia
Nicolas García Trillos
27
1
0
01 Oct 2023
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim
Chanho Min
Sejun Park
VLM
29
10
0
19 Sep 2023
Approximation Results for Gradient Descent trained Neural Networks
G. Welper
48
0
0
09 Sep 2023
1
2
3
4
Next