ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03426
  4. Cited By
UMAP: Uniform Manifold Approximation and Projection for Dimension
  Reduction

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

9 February 2018
Leland McInnes
John Healy
James Melville
ArXivPDFHTML

Papers citing "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction"

38 / 638 papers shown
Title
Cartolabe: A Web-Based Scalable Visualization of Large Document
  Collections
Cartolabe: A Web-Based Scalable Visualization of Large Document Collections
Philippe Caillou
Jonas Renault
Jean-Daniel Fekete
Anne-Catherine Letournel
Sebag Michèle
11
16
0
02 Mar 2020
Statistical power for cluster analysis
Statistical power for cluster analysis
Edwin S. Dalmaijer
Camilla L. Nord
D. Astle
11
281
0
01 Mar 2020
Supervised Dimensionality Reduction and Visualization using
  Centroid-encoder
Supervised Dimensionality Reduction and Visualization using Centroid-encoder
T. Ghosh
Michael Kirby
17
23
0
27 Feb 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Large-scale biometry with interpretable neural network regression on UK
  Biobank body MRI
Large-scale biometry with interpretable neural network regression on UK Biobank body MRI
Taro Langner
Robin Strand
H. Ahlström
J. Kullberg
31
22
0
17 Feb 2020
Machine Learning in Python: Main developments and technology trends in
  data science, machine learning, and artificial intelligence
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
483
0
12 Feb 2020
Deep Graph Mapper: Seeing Graphs through the Neural Lens
Deep Graph Mapper: Seeing Graphs through the Neural Lens
Cristian Bodnar
Cătălina Cangea
Pietro Lió
25
42
0
10 Feb 2020
Can x2vec Save Lives? Integrating Graph and Language Embeddings for
  Automatic Mental Health Classification
Can x2vec Save Lives? Integrating Graph and Language Embeddings for Automatic Mental Health Classification
Alex Ruch
22
6
0
04 Jan 2020
AMPL: A Data-Driven Modeling Pipeline for Drug Discovery
AMPL: A Data-Driven Modeling Pipeline for Drug Discovery
Amanda J. Minnich
K. McLoughlin
Margaret J. Tse
Jason Deng
Andrew Weber
...
Bharath Ramsundar
T. Rush
Stacie Calad-Thomson
J. Brase
Jonathan E. Allen
24
68
0
13 Nov 2019
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Ruochi Zhang
Yuesong Zou
Jian Ma
GNN
19
192
0
06 Nov 2019
FastEstimator: A Deep Learning Library for Fast Prototyping and
  Productization
FastEstimator: A Deep Learning Library for Fast Prototyping and Productization
Xiaomeng Dong
Junpyo Hong
Hsi-Ming Chang
Michael Potter
Aritra Chowdhury
...
Rajesh Tamada
Gaurav Kumar
Caroline Favart
V. R. Saripalli
Gopal Avinash
21
2
0
07 Oct 2019
Correlation of Auroral Dynamics and GNSS Scintillation with an
  Autoencoder
Correlation of Auroral Dynamics and GNSS Scintillation with an Autoencoder
K. Lamb
G. Malhotra
Athanasios Vlontzos
E. Wagstaff
A. G. Baydin
Anahita Bhiwandiwalla
Y. Gal
Alfredo Kalaitzis
Anthony Reina
A. Bhatt
31
6
0
04 Oct 2019
TriMap: Large-scale Dimensionality Reduction Using Triplets
TriMap: Large-scale Dimensionality Reduction Using Triplets
Ehsan Amid
Manfred K. Warmuth
11
118
0
01 Oct 2019
Representation Learning for Electronic Health Records
Representation Learning for Electronic Health Records
W. Weng
Peter Szolovits
28
19
0
19 Sep 2019
When Explainability Meets Adversarial Learning: Detecting Adversarial
  Examples using SHAP Signatures
When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures
Gil Fidel
Ron Bitton
A. Shabtai
FAtt
GAN
21
119
0
08 Sep 2019
Visualization of Very Large High-Dimensional Data Sets as Minimum
  Spanning Trees
Visualization of Very Large High-Dimensional Data Sets as Minimum Spanning Trees
Daniel Probst
J. Reymond
13
204
0
16 Aug 2019
Feature Robustness in Non-stationary Health Records: Caveats to
  Deployable Model Performance in Common Clinical Machine Learning Tasks
Feature Robustness in Non-stationary Health Records: Caveats to Deployable Model Performance in Common Clinical Machine Learning Tasks
Bret A. Nestor
Matthew B. A. McDermott
Willie Boag
G. Berner
Tristan Naumann
Michael C. Hughes
Anna Goldenberg
Marzyeh Ghassemi
OOD
25
109
0
02 Aug 2019
Charting the Right Manifold: Manifold Mixup for Few-shot Learning
Charting the Right Manifold: Manifold Mixup for Few-shot Learning
Puneet Mangla
M. Singh
Abhishek Sinha
Nupur Kumari
V. Balasubramanian
Balaji Krishnamurthy
SSL
18
327
0
28 Jul 2019
Fairest of Them All: Establishing a Strong Baseline for Cross-Domain
  Person ReID
Fairest of Them All: Establishing a Strong Baseline for Cross-Domain Person ReID
Devinder Kumar
P. Siva
P. Marchwica
A. Wong
21
17
0
28 Jul 2019
Towards Learning Universal, Regional, and Local Hydrological Behaviors
  via Machine-Learning Applied to Large-Sample Datasets
Towards Learning Universal, Regional, and Local Hydrological Behaviors via Machine-Learning Applied to Large-Sample Datasets
Frederik Kratzert
D. Klotz
Guy Shalev
G. Klambauer
Sepp Hochreiter
G. Nearing
14
545
0
19 Jul 2019
Beyond Imitation: Generative and Variational Choreography via Machine
  Learning
Beyond Imitation: Generative and Variational Choreography via Machine Learning
M. Pettee
C. Shimmin
Douglas Duhaime
I. Vidrin
DRL
13
22
0
11 Jul 2019
Latent ODEs for Irregularly-Sampled Time Series
Latent ODEs for Irregularly-Sampled Time Series
Yulia Rubanova
Ricky T. Q. Chen
David Duvenaud
BDL
AI4TS
31
251
0
08 Jul 2019
PathologyGAN: Learning deep representations of cancer tissue
PathologyGAN: Learning deep representations of cancer tissue
A. Quiros
R. Murray-Smith
Ke-Fei Yuan
MedIm
GAN
14
85
0
04 Jul 2019
Self-Supervised Similarity Learning for Digital Pathology
Self-Supervised Similarity Learning for Digital Pathology
J. Gildenblat
Eldad Klaiman
SSL
22
47
0
20 May 2019
Supporting Analysis of Dimensionality Reduction Results with Contrastive
  Learning
Supporting Analysis of Dimensionality Reduction Results with Contrastive Learning
Takanori Fujiwara
Oh-Hyun Kwon
K. Ma
19
77
0
10 May 2019
Evaluating the Underlying Gender Bias in Contextualized Word Embeddings
Evaluating the Underlying Gender Bias in Contextualized Word Embeddings
Christine Basta
Marta R. Costa-jussá
Noe Casas
16
189
0
18 Apr 2019
A Learned Representation for Scalable Vector Graphics
A Learned Representation for Scalable Vector Graphics
Raphael Gontijo-Lopes
David R Ha
Douglas Eck
Jonathon Shlens
GAN
OCL
30
113
0
04 Apr 2019
Summit: Scaling Deep Learning Interpretability by Visualizing Activation
  and Attribution Summarizations
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
Fred Hohman
Haekyu Park
Caleb Robinson
Duen Horng Chau
FAtt
3DH
HAI
19
213
0
04 Apr 2019
Understanding Childhood Vulnerability in The City of Surrey
Understanding Childhood Vulnerability in The City of Surrey
Cody Griffith
Varoon Mathur
Catherine Lin
Ke Zhu
16
0
0
25 Mar 2019
Complementary Learning for Overcoming Catastrophic Forgetting Using
  Experience Replay
Complementary Learning for Overcoming Catastrophic Forgetting Using Experience Replay
Mohammad Rostami
Soheil Kolouri
Praveen K. Pilly
CLL
22
67
0
11 Mar 2019
Deep Learning Multidimensional Projections
Deep Learning Multidimensional Projections
M. Espadoto
N. Hirata
A. Telea
19
60
0
21 Feb 2019
Where Do Human Heuristics Come From?
Where Do Human Heuristics Come From?
Marcel Binz
Dominik M. Endres
16
0
0
20 Feb 2019
Exploring Language Similarities with Dimensionality Reduction Technique
Exploring Language Similarities with Dimensionality Reduction Technique
Sangarshanan Veeraraghavan
VLM
8
0
0
16 Feb 2019
Heavy-tailed kernels reveal a finer cluster structure in t-SNE
  visualisations
Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations
D. Kobak
G. Linderman
Stefan Steinerberger
Y. Kluger
Philipp Berens
19
36
0
15 Feb 2019
Learning a Generative Model of Cancer Metastasis
Learning a Generative Model of Cancer Metastasis
Benjamin Kompa
Beau Coker
MedIm
AI4CE
16
0
0
17 Jan 2019
InstaNAS: Instance-aware Neural Architecture Search
InstaNAS: Instance-aware Neural Architecture Search
A. Cheng
Chieh Hubert Lin
Da-Cheng Juan
Wei Wei
Min Sun
27
46
0
26 Nov 2018
Contrastive Multivariate Singular Spectrum Analysis
Contrastive Multivariate Singular Spectrum Analysis
Abdi-Hakin Dirie
Abubakar Abid
James Zou
6
11
0
31 Oct 2018
GPGPU Linear Complexity t-SNE Optimization
GPGPU Linear Complexity t-SNE Optimization
Nicola Pezzotti
Julian Thijssen
A. Mordvintsev
T. Höllt
Baldur van Lew
B. Lelieveldt
E. Eisemann
Anna Vilanova
11
10
0
28 May 2018
Previous
123...111213