ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03006
  4. Cited By
Learning and Querying Fast Generative Models for Reinforcement Learning

Learning and Querying Fast Generative Models for Reinforcement Learning

8 February 2018
Lars Buesing
T. Weber
S. Racanière
S. M. Ali Eslami
Danilo Jimenez Rezende
David P. Reichert
Fabio Viola
F. Besse
Karol Gregor
Demis Hassabis
Daan Wierstra
    OffRL
ArXivPDFHTML

Papers citing "Learning and Querying Fast Generative Models for Reinforcement Learning"

29 / 29 papers shown
Title
Scaling Multi Agent Reinforcement Learning for Underwater Acoustic Tracking via Autonomous Vehicles
Scaling Multi Agent Reinforcement Learning for Underwater Acoustic Tracking via Autonomous Vehicles
Matteo Gallici
Ivan Masmitja
Mario Martin
OffRL
24
0
0
13 May 2025
On Uncertainty in Deep State Space Models for Model-Based Reinforcement
  Learning
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
30
9
0
17 Oct 2022
Flow-based Recurrent Belief State Learning for POMDPs
Flow-based Recurrent Belief State Learning for POMDPs
Xiaoyu Chen
Yao Mu
Ping Luo
Sheng Li
Jianyu Chen
45
18
0
23 May 2022
Mingling Foresight with Imagination: Model-Based Cooperative Multi-Agent
  Reinforcement Learning
Mingling Foresight with Imagination: Model-Based Cooperative Multi-Agent Reinforcement Learning
Zhiwei Xu
Dapeng Li
Bin Zhang
Yuan Zhan
Yunru Bai
Guoliang Fan
OffRL
27
6
0
20 Apr 2022
Training and Evaluation of Deep Policies using Reinforcement Learning
  and Generative Models
Training and Evaluation of Deep Policies using Reinforcement Learning and Generative Models
Ali Ghadirzadeh
Petra Poklukar
Karol Arndt
Chelsea Finn
Ville Kyrki
Danica Kragic
Mårten Björkman
OffRL
22
1
0
18 Apr 2022
Information-Theoretic Odometry Learning
Information-Theoretic Odometry Learning
Sen Zhang
Jing Zhang
Dacheng Tao
23
5
0
11 Mar 2022
Online Planning in POMDPs with Self-Improving Simulators
Online Planning in POMDPs with Self-Improving Simulators
Jinke He
Miguel Suau
Hendrik Baier
Michael Kaisers
F. Oliehoek
16
1
0
27 Jan 2022
Safe Deep RL in 3D Environments using Human Feedback
Safe Deep RL in 3D Environments using Human Feedback
Matthew Rahtz
Vikrant Varma
Ramana Kumar
Zachary Kenton
Shane Legg
Jan Leike
32
4
0
20 Jan 2022
Learning State Representations via Retracing in Reinforcement Learning
Learning State Representations via Retracing in Reinforcement Learning
Changmin Yu
Dong Li
Jianye Hao
Jun Wang
Neil Burgess
30
7
0
24 Nov 2021
Variational Predictive Routing with Nested Subjective Timescales
Variational Predictive Routing with Nested Subjective Timescales
Alexey Zakharov
Qinghai Guo
Z. Fountas
BDL
AI4TS
43
9
0
21 Oct 2021
Deep Affordance Foresight: Planning Through What Can Be Done in the
  Future
Deep Affordance Foresight: Planning Through What Can Be Done in the Future
Danfei Xu
Ajay Mandlekar
Roberto Martín-Martín
Yuke Zhu
Silvio Savarese
Li Fei-Fei
33
70
0
17 Nov 2020
Generative Neurosymbolic Machines
Generative Neurosymbolic Machines
Jindong Jiang
Sungjin Ahn
BDL
OCL
225
68
0
23 Oct 2020
Mastering Atari with Discrete World Models
Mastering Atari with Discrete World Models
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
DRL
48
814
0
05 Oct 2020
Data-efficient visuomotor policy training using reinforcement learning
  and generative models
Data-efficient visuomotor policy training using reinforcement learning and generative models
Ali Ghadirzadeh
Petra Poklukar
Ville Kyrki
Danica Kragic
Mårten Björkman
OffRL
39
9
0
26 Jul 2020
Planning to Explore via Self-Supervised World Models
Planning to Explore via Self-Supervised World Models
Ramanan Sekar
Oleh Rybkin
Kostas Daniilidis
Pieter Abbeel
Danijar Hafner
Deepak Pathak
SSL
33
398
0
12 May 2020
Combining Q-Learning and Search with Amortized Value Estimates
Combining Q-Learning and Search with Amortized Value Estimates
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
Tobias Pfaff
T. Weber
Lars Buesing
Peter W. Battaglia
OffRL
27
47
0
05 Dec 2019
Learning to Predict Without Looking Ahead: World Models Without Forward
  Prediction
Learning to Predict Without Looking Ahead: World Models Without Forward Prediction
C. Freeman
Luke Metz
David R Ha
33
35
0
29 Oct 2019
Making sense of sensory input
Making sense of sensory input
Maciej Wołczyk
Jacek Tabor
Johannes Welbl
Szymon Maszke
Marek Sergot
19
52
0
05 Oct 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
25
372
0
01 Jul 2019
Sequential Neural Processes
Sequential Neural Processes
Gautam Singh
Jaesik Yoon
Youngsung Son
Sungjin Ahn
BDL
AI4TS
40
81
0
24 Jun 2019
Learning Belief Representations for Imitation Learning in POMDPs
Learning Belief Representations for Imitation Learning in POMDPs
Tanmay Gangwani
Joel Lehman
Qiang Liu
Jian Peng
24
36
0
22 Jun 2019
Shaping Belief States with Generative Environment Models for RL
Shaping Belief States with Generative Environment Models for RL
Karol Gregor
Danilo Jimenez Rezende
F. Besse
Yan Wu
Hamza Merzic
Aaron van den Oord
OffRL
AI4CE
16
117
0
21 Jun 2019
NeoNav: Improving the Generalization of Visual Navigation via Generating
  Next Expected Observations
NeoNav: Improving the Generalization of Visual Navigation via Generating Next Expected Observations
Qiaoyun Wu
Tianyi Zhou
Jun Wang
Kai Xu
16
15
0
17 Jun 2019
Learning Powerful Policies by Using Consistent Dynamics Model
Learning Powerful Policies by Using Consistent Dynamics Model
Shagun Sodhani
Anirudh Goyal
T. Deleu
Yoshua Bengio
Sergey Levine
Jian Tang
OffRL
16
5
0
11 Jun 2019
Keyframing the Future: Keyframe Discovery for Visual Prediction and
  Planning
Keyframing the Future: Keyframe Discovery for Visual Prediction and Planning
Karl Pertsch
Oleh Rybkin
Jingyun Yang
Shenghao Zhou
Konstantinos G. Derpanis
Kostas Daniilidis
Joseph J. Lim
Andrew Jaegle
VGen
45
24
0
11 Apr 2019
A Local Approach to Forward Model Learning: Results on the Game of Life
  Game
A Local Approach to Forward Model Learning: Results on the Game of Life Game
Simon Lucas
Alexander Dockhorn
Vanessa Volz
Chris Bamford
Raluca D. Gaina
Ivan Bravi
Diego Perez-Liebana
Sanaz Mostaghim
R. Kruse
24
17
0
29 Mar 2019
Stochastic Prediction of Multi-Agent Interactions from Partial
  Observations
Stochastic Prediction of Multi-Agent Interactions from Partial Observations
Chen Sun
Per Karlsson
Jiajun Wu
J. Tenenbaum
Kevin Patrick Murphy
33
89
0
25 Feb 2019
The Dreaming Variational Autoencoder for Reinforcement Learning
  Environments
The Dreaming Variational Autoencoder for Reinforcement Learning Environments
Per-Arne Andersen
M. G. Olsen
Ole-Christoffer Granmo
DRL
22
17
0
02 Oct 2018
Temporal Difference Variational Auto-Encoder
Temporal Difference Variational Auto-Encoder
Karol Gregor
George Papamakarios
F. Besse
Lars Buesing
Theophane Weber
DRL
24
126
0
08 Jun 2018
1