ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.02952
  4. Cited By
TSViz: Demystification of Deep Learning Models for Time-Series Analysis

TSViz: Demystification of Deep Learning Models for Time-Series Analysis

8 February 2018
Shoaib Ahmed Siddiqui
Dominique Mercier
Mohsin Munir
Andreas Dengel
Sheraz Ahmed
    FAtt
    AI4TS
ArXivPDFHTML

Papers citing "TSViz: Demystification of Deep Learning Models for Time-Series Analysis"

22 / 22 papers shown
Title
Evaluating Simplification Algorithms for Interpretability of Time Series Classification
Evaluating Simplification Algorithms for Interpretability of Time Series Classification
Felix Marti-Perez
Brigt Håvardstun
Cèsar Ferri
Carlos Monserrat
Jan Arne Telle
AI4TS
34
0
0
13 May 2025
Interpreting Outliers in Time Series Data through Decoding Autoencoder
Interpreting Outliers in Time Series Data through Decoding Autoencoder
Patrick Knab
Sascha Marton
Christian Bartelt
Robert Fuder
29
1
0
03 Sep 2024
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAI
AI4TS
101
28
0
30 Aug 2024
Interpretation of Time-Series Deep Models: A Survey
Interpretation of Time-Series Deep Models: A Survey
Ziqi Zhao
Yucheng Shi
Shushan Wu
Fan Yang
Wenzhan Song
Ninghao Liu
AI4TS
67
6
0
23 May 2023
Explainable AI for Time Series via Virtual Inspection Layers
Explainable AI for Time Series via Virtual Inspection Layers
Johanna Vielhaben
Sebastian Lapuschkin
G. Montavon
Wojciech Samek
XAI
AI4TS
37
26
0
11 Mar 2023
Privacy Meets Explainability: A Comprehensive Impact Benchmark
Privacy Meets Explainability: A Comprehensive Impact Benchmark
S. Saifullah
Dominique Mercier
Adriano Lucieri
Andreas Dengel
Sheraz Ahmed
35
15
0
08 Nov 2022
Explainable AI for clinical and remote health applications: a survey on
  tabular and time series data
Explainable AI for clinical and remote health applications: a survey on tabular and time series data
Flavio Di Martino
Franca Delmastro
AI4TS
33
92
0
14 Sep 2022
TSInterpret: A unified framework for time series interpretability
TSInterpret: A unified framework for time series interpretability
Jacqueline Höllig
Cedric Kulbach
Steffen Thoma
AI4TS
AI4CE
34
2
0
10 Aug 2022
Statistics and Deep Learning-based Hybrid Model for Interpretable
  Anomaly Detection
Statistics and Deep Learning-based Hybrid Model for Interpretable Anomaly Detection
Thabang Mathonsi
Terence L van Zyl
42
0
0
25 Feb 2022
Time to Focus: A Comprehensive Benchmark Using Time Series Attribution
  Methods
Time to Focus: A Comprehensive Benchmark Using Time Series Attribution Methods
Dominique Mercier
Jwalin Bhatt
Andreas Dengel
Sheraz Ahmed
AI4TS
33
11
0
08 Feb 2022
Time Series Model Attribution Visualizations as Explanations
Time Series Model Attribution Visualizations as Explanations
U. Schlegel
Daniel A. Keim
TDI
BDL
FAtt
AI4TS
XAI
53
15
0
27 Sep 2021
Explaining Time Series Predictions with Dynamic Masks
Explaining Time Series Predictions with Dynamic Masks
Jonathan Crabbé
M. Schaar
FAtt
AI4TS
30
80
0
09 Jun 2021
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Thomas Rojat
Raphael Puget
David Filliat
Javier Del Ser
R. Gelin
Natalia Díaz Rodríguez
XAI
AI4TS
58
129
0
02 Apr 2021
Explaining Deep Learning Models for Structured Data using Layer-Wise
  Relevance Propagation
Explaining Deep Learning Models for Structured Data using Layer-Wise Relevance Propagation
hsan Ullah
André Ríos
Vaibhav Gala
Susan Mckeever
FAtt
36
10
0
26 Nov 2020
Time Series Forecasting With Deep Learning: A Survey
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
59
1,200
0
28 Apr 2020
Sequential Interpretability: Methods, Applications, and Future Direction
  for Understanding Deep Learning Models in the Context of Sequential Data
Sequential Interpretability: Methods, Applications, and Future Direction for Understanding Deep Learning Models in the Context of Sequential Data
B. Shickel
Parisa Rashidi
AI4TS
40
17
0
27 Apr 2020
TSInsight: A local-global attribution framework for interpretability in
  time-series data
TSInsight: A local-global attribution framework for interpretability in time-series data
Shoaib Ahmed Siddiqui
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
24
12
0
06 Apr 2020
What went wrong and when? Instance-wise Feature Importance for
  Time-series Models
What went wrong and when? Instance-wise Feature Importance for Time-series Models
S. Tonekaboni
Shalmali Joshi
Kieran Campbell
David Duvenaud
Anna Goldenberg
FAtt
OOD
AI4TS
59
14
0
05 Mar 2020
Detecting and interpreting myocardial infarction using fully
  convolutional neural networks
Detecting and interpreting myocardial infarction using fully convolutional neural networks
Nils Strodthoff
C. Strodthoff
48
151
0
18 Jun 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,244
0
24 Jun 2017
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Zhiwen Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
718
6,755
0
26 Sep 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
370
5,859
0
08 Jul 2016
1