ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.01933
  4. Cited By
A Survey Of Methods For Explaining Black Box Models

A Survey Of Methods For Explaining Black Box Models

6 February 2018
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
    XAI
ArXivPDFHTML

Papers citing "A Survey Of Methods For Explaining Black Box Models"

19 / 419 papers shown
Title
Challenges for an Ontology of Artificial Intelligence
Challenges for an Ontology of Artificial Intelligence
Scott H. Hawley
16
11
0
25 Feb 2019
Fairwashing: the risk of rationalization
Fairwashing: the risk of rationalization
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
19
142
0
28 Jan 2019
Interpretable machine learning: definitions, methods, and applications
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin-Xia Yu
XAI
HAI
47
1,417
0
14 Jan 2019
On The Stability of Interpretable Models
On The Stability of Interpretable Models
Riccardo Guidotti
Salvatore Ruggieri
FAtt
16
10
0
22 Oct 2018
On the Art and Science of Machine Learning Explanations
On the Art and Science of Machine Learning Explanations
Patrick Hall
FAtt
XAI
20
30
0
05 Oct 2018
A Gradient-Based Split Criterion for Highly Accurate and Transparent
  Model Trees
A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees
Klaus Broelemann
Gjergji Kasneci
24
20
0
25 Sep 2018
Extractive Adversarial Networks: High-Recall Explanations for
  Identifying Personal Attacks in Social Media Posts
Extractive Adversarial Networks: High-Recall Explanations for Identifying Personal Attacks in Social Media Posts
Samuel Carton
Qiaozhu Mei
Paul Resnick
FAtt
AAML
19
34
0
01 Sep 2018
Using Machine Learning Safely in Automotive Software: An Assessment and
  Adaption of Software Process Requirements in ISO 26262
Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262
Rick Salay
Krzysztof Czarnecki
25
69
0
05 Aug 2018
Contrastive Explanations for Reinforcement Learning in terms of Expected
  Consequences
Contrastive Explanations for Reinforcement Learning in terms of Expected Consequences
J. V. D. Waa
J. Diggelen
K. Bosch
Mark Antonius Neerincx
OffRL
20
106
0
23 Jul 2018
Open the Black Box Data-Driven Explanation of Black Box Decision Systems
Open the Black Box Data-Driven Explanation of Black Box Decision Systems
D. Pedreschi
F. Giannotti
Riccardo Guidotti
A. Monreale
Luca Pappalardo
Salvatore Ruggieri
Franco Turini
19
38
0
26 Jun 2018
Interpretable to Whom? A Role-based Model for Analyzing Interpretable
  Machine Learning Systems
Interpretable to Whom? A Role-based Model for Analyzing Interpretable Machine Learning Systems
Richard J. Tomsett
Dave Braines
Daniel Harborne
Alun D. Preece
Supriyo Chakraborty
FaML
29
164
0
20 Jun 2018
Defining Locality for Surrogates in Post-hoc Interpretablity
Defining Locality for Surrogates in Post-hoc Interpretablity
Thibault Laugel
X. Renard
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
FAtt
7
80
0
19 Jun 2018
Contrastive Explanations with Local Foil Trees
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
19
82
0
19 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
40
1,840
0
31 May 2018
Local Rule-Based Explanations of Black Box Decision Systems
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
31
435
0
28 May 2018
Disentangling Controllable and Uncontrollable Factors of Variation by
  Interacting with the World
Disentangling Controllable and Uncontrollable Factors of Variation by Interacting with the World
Yoshihide Sawada
DRL
21
10
0
19 Apr 2018
Entanglement-guided architectures of machine learning by quantum tensor
  network
Entanglement-guided architectures of machine learning by quantum tensor network
Yuhan Liu
Xiao Zhang
M. Lewenstein
Shi-Ju Ran
26
32
0
24 Mar 2018
A comparative study of fairness-enhancing interventions in machine
  learning
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
23
635
0
13 Feb 2018
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,842
0
08 Jul 2016
Previous
123456789