Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.01933
Cited By
A Survey Of Methods For Explaining Black Box Models
6 February 2018
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Survey Of Methods For Explaining Black Box Models"
50 / 419 papers shown
Title
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
28
32
0
16 Jun 2020
OptiLIME: Optimized LIME Explanations for Diagnostic Computer Algorithms
Giorgio Visani
Enrico Bagli
F. Chesani
FAtt
27
60
0
10 Jun 2020
Principles to Practices for Responsible AI: Closing the Gap
Daniel S. Schiff
B. Rakova
A. Ayesh
Anat Fanti
M. Lennon
19
87
0
08 Jun 2020
Model-agnostic Feature Importance and Effects with Dependent Features -- A Conditional Subgroup Approach
Christoph Molnar
Gunnar Konig
B. Bischl
Giuseppe Casalicchio
31
77
0
08 Jun 2020
A Performance-Explainability Framework to Benchmark Machine Learning Methods: Application to Multivariate Time Series Classifiers
Kevin Fauvel
Véronique Masson
Elisa Fromont
AI4TS
44
17
0
29 May 2020
Explainable Matrix -- Visualization for Global and Local Interpretability of Random Forest Classification Ensembles
Mário Popolin Neto
F. Paulovich
FAtt
33
88
0
08 May 2020
Contextualizing Hate Speech Classifiers with Post-hoc Explanation
Brendan Kennedy
Xisen Jin
Aida Mostafazadeh Davani
Morteza Dehghani
Xiang Ren
13
137
0
05 May 2020
Don't Explain without Verifying Veracity: An Evaluation of Explainable AI with Video Activity Recognition
Mahsan Nourani
Chiradeep Roy
Tahrima Rahman
Eric D. Ragan
Nicholas Ruozzi
Vibhav Gogate
AAML
15
17
0
05 May 2020
Post-hoc explanation of black-box classifiers using confident itemsets
M. Moradi
Matthias Samwald
57
98
0
05 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
41
371
0
30 Apr 2020
Learning a Formula of Interpretability to Learn Interpretable Formulas
M. Virgolin
A. D. Lorenzo
Eric Medvet
Francesca Randone
16
33
0
23 Apr 2020
Born-Again Tree Ensembles
Thibaut Vidal
Toni Pacheco
Maximilian Schiffer
62
53
0
24 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
Self-Supervised Discovering of Interpretable Features for Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Zhuoyuan Wang
Tingyu Lin
Cheng Wu
SSL
28
18
0
16 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
Testing Monotonicity of Machine Learning Models
Arnab Sharma
Heike Wehrheim
6
8
0
27 Feb 2020
Better Classifier Calibration for Small Data Sets
Alasalmi Tuomo
Jaakko Suutala
Heli Koskimäki
J. Röning
13
9
0
24 Feb 2020
The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
Andrés Páez
13
190
0
22 Feb 2020
AI safety: state of the field through quantitative lens
Mislav Juric
A. Sandic
Mario Brčič
25
24
0
12 Feb 2020
Convex Density Constraints for Computing Plausible Counterfactual Explanations
André Artelt
Barbara Hammer
19
47
0
12 Feb 2020
Transparency and Trust in Human-AI-Interaction: The Role of Model-Agnostic Explanations in Computer Vision-Based Decision Support
Christian Meske
Enrico Bunde
19
7
0
04 Feb 2020
Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study
Ahmed Alqaraawi
M. Schuessler
Philipp Weiß
Enrico Costanza
N. Bianchi-Berthouze
AAML
FAtt
XAI
27
197
0
03 Feb 2020
Black Box Explanation by Learning Image Exemplars in the Latent Feature Space
Riccardo Guidotti
A. Monreale
Stan Matwin
D. Pedreschi
FAtt
14
67
0
27 Jan 2020
Evaluating Weakly Supervised Object Localization Methods Right
Junsuk Choe
Seong Joon Oh
Seungho Lee
Sanghyuk Chun
Zeynep Akata
Hyunjung Shim
WSOL
300
186
0
21 Jan 2020
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P. Schramowski
Wolfgang Stammer
Stefano Teso
Anna Brugger
Xiaoting Shao
Hans-Georg Luigs
Anne-Katrin Mahlein
Kristian Kersting
37
207
0
15 Jan 2020
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans
Vivian Lai
Han Liu
Chenhao Tan
35
138
0
14 Jan 2020
Explaining the Explainer: A First Theoretical Analysis of LIME
Damien Garreau
U. V. Luxburg
FAtt
9
172
0
10 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
702
0
08 Jan 2020
Effect of Confidence and Explanation on Accuracy and Trust Calibration in AI-Assisted Decision Making
Yunfeng Zhang
Q. V. Liao
Rachel K. E. Bellamy
28
661
0
07 Jan 2020
Exploring Interpretability for Predictive Process Analytics
Renuka Sindhgatta
Chun Ouyang
Catarina Moreira
8
2
0
22 Dec 2019
Differentiable Reasoning on Large Knowledge Bases and Natural Language
Pasquale Minervini
Matko Bovsnjak
Tim Rocktaschel
Sebastian Riedel
Edward Grefenstette
LRM
18
88
0
17 Dec 2019
Balancing the Tradeoff Between Clustering Value and Interpretability
Sandhya Saisubramanian
Sainyam Galhotra
S. Zilberstein
24
40
0
17 Dec 2019
Automated Dependence Plots
David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
12
1
0
02 Dec 2019
LionForests: Local Interpretation of Random Forests
Ioannis Mollas
Nick Bassiliades
I. Vlahavas
Grigorios Tsoumakas
19
12
0
20 Nov 2019
An explanation method for Siamese neural networks
Lev V. Utkin
M. Kovalev
E. Kasimov
19
14
0
18 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,111
0
22 Oct 2019
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
Uncertainty-aware Sensitivity Analysis Using Rényi Divergences
Topi Paananen
Michael Riis Andersen
Aki Vehtari
19
3
0
17 Oct 2019
Empirical Analysis of Multi-Task Learning for Reducing Model Bias in Toxic Comment Detection
Ameya Vaidya
Feng Mai
Yue Ning
115
21
0
21 Sep 2019
LoRMIkA: Local rule-based model interpretability with k-optimal associations
Dilini Sewwandi Rajapaksha
Christoph Bergmeir
Wray L. Buntine
35
31
0
11 Aug 2019
NeuroMask: Explaining Predictions of Deep Neural Networks through Mask Learning
M. Alzantot
Amy Widdicombe
S. Julier
Mani B. Srivastava
AAML
FAtt
15
3
0
05 Aug 2019
A Factored Generalized Additive Model for Clinical Decision Support in the Operating Room
Zhicheng Cui
Bradley A. Fritz
C. King
M. Avidan
Yixin Chen
22
13
0
29 Jul 2019
AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks
Jingyuan Wang
Yang Zhang
Ke Tang
Junjie Wu
Zhang Xiong
AIFin
16
119
0
24 Jul 2019
Global Aggregations of Local Explanations for Black Box models
I. V. D. Linden
H. Haned
Evangelos Kanoulas
FAtt
21
63
0
05 Jul 2019
On Explaining Machine Learning Models by Evolving Crucial and Compact Features
M. Virgolin
Tanja Alderliesten
Peter A. N. Bosman
11
28
0
04 Jul 2019
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
107
44
0
11 Jun 2019
An Information Theoretic Interpretation to Deep Neural Networks
Shao-Lun Huang
Xiangxiang Xu
Lizhong Zheng
G. Wornell
FAtt
22
41
0
16 May 2019
"Why did you do that?": Explaining black box models with Inductive Synthesis
Görkem Paçaci
David Johnson
S. McKeever
A. Hamfelt
15
6
0
17 Apr 2019
Explainability in Human-Agent Systems
A. Rosenfeld
A. Richardson
XAI
27
203
0
17 Apr 2019
Previous
1
2
3
4
5
6
7
8
9
Next