Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.01933
Cited By
v1
v2
v3 (latest)
A Survey Of Methods For Explaining Black Box Models
6 February 2018
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Survey Of Methods For Explaining Black Box Models"
50 / 1,104 papers shown
Title
Identifying Spurious Correlations for Robust Text Classification
Zhao Wang
A. Culotta
OOD
80
78
0
06 Oct 2020
A Survey on Explainability in Machine Reading Comprehension
Mokanarangan Thayaparan
Marco Valentino
André Freitas
FaML
108
49
0
01 Oct 2020
Explainable AI without Interpretable Model
Kary Framling
ELM
27
7
0
29 Sep 2020
Distillation of Weighted Automata from Recurrent Neural Networks using a Spectral Approach
Rémi Eyraud
Stéphane Ayache
51
16
0
28 Sep 2020
Local Post-Hoc Explanations for Predictive Process Monitoring in Manufacturing
Nijat Mehdiyev
Peter Fettke
75
11
0
22 Sep 2020
Machine Guides, Human Supervises: Interactive Learning with Global Explanations
Teodora Popordanoska
Mohit Kumar
Stefano Teso
118
21
0
21 Sep 2020
Humans learn too: Better Human-AI Interaction using Optimized Human Inputs
Johannes Schneider
35
4
0
19 Sep 2020
Explainable boosted linear regression for time series forecasting
Igor Ilic
Berk Görgülü
Mucahit Cevik
M. Baydogan
AI4TS
56
63
0
18 Sep 2020
Evaluation of Local Explanation Methods for Multivariate Time Series Forecasting
Ozan Ozyegen
Igor Ilic
Mucahit Cevik
FAtt
AI4TS
41
2
0
18 Sep 2020
Better Model Selection with a new Definition of Feature Importance
Fan Fang
Carmine Ventre
Lingbo Li
Leslie Kanthan
Fan Wu
Michail Basios
FAtt
42
6
0
16 Sep 2020
Should We Trust (X)AI? Design Dimensions for Structured Experimental Evaluations
F. Sperrle
Mennatallah El-Assady
G. Guo
Duen Horng Chau
Alex Endert
Daniel A. Keim
69
19
0
14 Sep 2020
Genetic Programming is Naturally Suited to Evolve Bagging Ensembles
M. Virgolin
38
0
0
13 Sep 2020
Towards Interpretable Multi-Task Learning Using Bilevel Programming
Francesco Alesiani
Shujian Yu
Ammar Shaker
Wenzhe Yin
23
4
0
11 Sep 2020
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin M. Kenny
Mark T. Keane
70
102
0
10 Sep 2020
Region Comparison Network for Interpretable Few-shot Image Classification
Z. Xue
Lixin Duan
Wen Li
Lin Chen
Jiebo Luo
61
16
0
08 Sep 2020
Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring
Nijat Mehdiyev
Peter Fettke
AI4TS
67
55
0
04 Sep 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
87
52
0
03 Sep 2020
Machine Reasoning Explainability
K. Čyras
R. Badrinath
S. Mohalik
A. Mujumdar
Alexandros Nikou
Alessandro Previti
Vaishnavi Sundararajan
Aneta Vulgarakis Feljan
LRM
72
13
0
01 Sep 2020
SOAR: Simultaneous Or of And Rules for Classification of Positive & Negative Classes
Elena Khusainova
Emily Dodwell
Ritwik Mitra
29
2
0
25 Aug 2020
Looking Deeper into Tabular LIME
Damien Garreau
U. V. Luxburg
FAtt
LMTD
173
30
0
25 Aug 2020
DNN2LR: Interpretation-inspired Feature Crossing for Real-world Tabular Data
Zhaocheng Liu
Qiang Liu
Haoli Zhang
Yuntian Chen
84
13
0
22 Aug 2020
Can We Trust Your Explanations? Sanity Checks for Interpreters in Android Malware Analysis
Ming Fan
Wenying Wei
Xiaofei Xie
Yang Liu
X. Guan
Ting Liu
FAtt
AAML
102
38
0
13 Aug 2020
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay
Sasha Rubin
Thomas Gerspacher
Martin C. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
72
63
0
13 Aug 2020
Bias and Discrimination in AI: a cross-disciplinary perspective
Xavier Ferrer
Tom van Nuenen
Jose Such
Mark Coté
Natalia Criado
FaML
48
148
0
11 Aug 2020
Axiom-based Grad-CAM: Towards Accurate Visualization and Explanation of CNNs
Ruigang Fu
Qingyong Hu
Xiaohu Dong
Yulan Guo
Yinghui Gao
Biao Li
FAtt
93
272
0
05 Aug 2020
Explainable Predictive Process Monitoring
Musabir Musabayli
F. Maggi
Williams Rizzi
Josep Carmona
Chiara Di Francescomarino
68
61
0
04 Aug 2020
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution
A. Khademi
Vasant Honavar
CML
39
9
0
01 Aug 2020
The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies
A. Markus
J. Kors
P. Rijnbeek
89
471
0
31 Jul 2020
Computing Optimal Decision Sets with SAT
Jinqiang Yu
Alexey Ignatiev
Peter Stuckey
P. L. Bodic
FAtt
114
26
0
29 Jul 2020
Memory networks for consumer protection:unfairness exposed
Federico Ruggeri
F. Lagioia
Marco Lippi
Paolo Torroni
26
0
0
24 Jul 2020
Study of Different Deep Learning Approach with Explainable AI for Screening Patients with COVID-19 Symptoms: Using CT Scan and Chest X-ray Image Dataset
M. Ahsan
Kishor Datta Gupta
Mohammad Maminur Islam
Sajib Sen
Md Lutfar Rahman
Mohammad Shakhawat Hossain
52
35
0
24 Jul 2020
Deep Active Learning by Model Interpretability
Qiang Liu
Zhaocheng Liu
Xiaofang Zhu
Yeliang Xiu
49
4
0
23 Jul 2020
Interpretable Anomaly Detection with DIFFI: Depth-based Isolation Forest Feature Importance
Mattia Carletti
M. Terzi
Gian Antonio Susto
50
42
0
21 Jul 2020
An Interpretable Probabilistic Approach for Demystifying Black-box Predictive Models
Catarina Moreira
Yu-Liang Chou
M. Velmurugan
Chun Ouyang
Renuka Sindhgatta
P. Bruza
114
58
0
21 Jul 2020
Melody: Generating and Visualizing Machine Learning Model Summary to Understand Data and Classifiers Together
G. Chan
E. Bertini
L. G. Nonato
Brian Barr
Claudio T. Silva
40
17
0
21 Jul 2020
Toward Machine-Guided, Human-Initiated Explanatory Interactive Learning
Teodora Popordanoska
Mohit Kumar
Stefano Teso
46
1
0
20 Jul 2020
Technologies for Trustworthy Machine Learning: A Survey in a Socio-Technical Context
Ehsan Toreini
Mhairi Aitken
Kovila P. L. Coopamootoo
Karen Elliott
Vladimiro González-Zelaya
P. Missier
Magdalene Ng
Aad van Moorsel
72
18
0
17 Jul 2020
On quantitative aspects of model interpretability
An-phi Nguyen
María Rodríguez Martínez
67
115
0
15 Jul 2020
When stakes are high: balancing accuracy and transparency with Model-Agnostic Interpretable Data-driven suRRogates
Roel Henckaerts
Katrien Antonio
Marie-Pier Côté
25
3
0
14 Jul 2020
Editable AI: Mixed Human-AI Authoring of Code Patterns
Kartik Chugh
Andrea Y. Solis
Thomas D. Latoza
16
3
0
12 Jul 2020
Evaluation for Weakly Supervised Object Localization: Protocol, Metrics, and Datasets
Junsuk Choe
Seong Joon Oh
Sanghyuk Chun
Seungho Lee
Zeynep Akata
Hyunjung Shim
WSOL
460
25
0
08 Jul 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
195
645
0
01 Jul 2020
Using Human Psychophysics to Evaluate Generalization in Scene Text Recognition Models
Sahar Siddiqui
E. Sizikova
Gemma Roig
N. Majaj
D. Pelli
16
1
0
30 Jun 2020
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
117
19
0
26 Jun 2020
DOME: Recommendations for supervised machine learning validation in biology
Ian Walsh
D. Fishman
Dario Garcia-Gasulla
T. Titma
Gianluca Pollastri
The ELIXIR Machine Learning focus group
J. Harrow
Fotis Psomopoulos
Silvio C.E. Tosatto
AI4CE
8
3
0
25 Jun 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
96
73
0
24 Jun 2020
Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction
Esther Puyol-Antón
Chong Chen
J. Clough
B. Ruijsink
B. Sidhu
...
M. Elliott
Vishal S. Mehta
Daniel Rueckert
C. Rinaldi
A. King
58
33
0
24 Jun 2020
Quality Management of Machine Learning Systems
P. Santhanam
39
18
0
16 Jun 2020
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
143
32
0
16 Jun 2020
A framework for step-wise explaining how to solve constraint satisfaction problems
B. Bogaerts
Emilio Gamba
Tias Guns
LRM
24
17
0
11 Jun 2020
Previous
1
2
3
...
17
18
19
...
21
22
23
Next