ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.01737
  4. Cited By
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent

Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent

5 February 2018
Trevor Campbell
Tamara Broderick
ArXivPDFHTML

Papers citing "Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent"

27 / 27 papers shown
Title
Evaluation and Incident Prevention in an Enterprise AI Assistant
Evaluation and Incident Prevention in an Enterprise AI Assistant
Akash Maharaj
David Arbour
Daniel Lee
Uttaran Bhattacharya
Anup B. Rao
Austin Zane
Avi Feller
Kun Qian
Yunyao Li
20
0
0
11 Apr 2025
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Anish Acharya
Sujay Sanghavi
Alexandros G. Dimakis
Inderjit S Dhillon
AAML
55
0
0
01 Apr 2025
ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
Guanqi Zhan
Yuanpei Liu
Kai Han
Weidi Xie
Andrew Zisserman
VLM
147
0
0
21 Feb 2025
Bad Students Make Great Teachers: Active Learning Accelerates
  Large-Scale Visual Understanding
Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding
Talfan Evans
Shreya Pathak
Hamza Merzic
Jonathan Schwarz
Ryutaro Tanno
Olivier J. Hénaff
13
16
0
08 Dec 2023
Fair Wasserstein Coresets
Fair Wasserstein Coresets
Zikai Xiong
Niccolò Dalmasso
Shubham Sharma
Freddy Lecue
Daniele Magazzeni
Vamsi K. Potluru
T. Balch
Manuela Veloso
31
2
0
09 Nov 2023
Coreset Markov Chain Monte Carlo
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
13
4
0
25 Oct 2023
Training Quantum Boltzmann Machines with Coresets
Training Quantum Boltzmann Machines with Coresets
Joshua Viszlai
T. Tomesh
P. Gokhale
Eric R. Anschuetz
Frederic T. Chong
14
0
0
26 Jul 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
31
4
0
21 Apr 2023
Provable Data Subset Selection For Efficient Neural Network Training
Provable Data Subset Selection For Efficient Neural Network Training
M. Tukan
Samson Zhou
Alaa Maalouf
Daniela Rus
Vladimir Braverman
Dan Feldman
MLT
23
9
0
09 Mar 2023
Compressed Gastric Image Generation Based on Soft-Label Dataset
  Distillation for Medical Data Sharing
Compressed Gastric Image Generation Based on Soft-Label Dataset Distillation for Medical Data Sharing
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
25
40
0
29 Sep 2022
Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems
Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems
Jiajia Guo
Chao-Kai Wen
Shi Jin
Geoffrey Ye Li
29
146
0
29 Jun 2022
Sampling with replacement vs Poisson sampling: a comparative study in
  optimal subsampling
Sampling with replacement vs Poisson sampling: a comparative study in optimal subsampling
Jing Wang
Jiahui Zou
Haiying Wang
37
16
0
17 May 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
21
14
0
11 Mar 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
12
13
0
22 Dec 2021
Gradient-matching coresets for continual learning
Gradient-matching coresets for continual learning
Lukas Balles
Giovanni Zappella
Cédric Archambeau
CLL
DD
36
2
0
09 Dec 2021
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
15
8
0
06 Dec 2021
A Novel Sequential Coreset Method for Gradient Descent Algorithms
A Novel Sequential Coreset Method for Gradient Descent Algorithms
Jiawei Huang
Ru Huang
Wenjie Liu
N. Freris
Huihua Ding
19
16
0
05 Dec 2021
Data Summarization via Bilevel Optimization
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
28
8
0
26 Sep 2021
RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised
  Learning
RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised Learning
Krishnateja Killamsetty
Xujiang Zhao
F. Chen
Rishabh K. Iyer
11
78
0
14 Jun 2021
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
Chaosheng Dong
Xiaojie Jin
Weihao Gao
Yijia Wang
Hongyi Zhang
Xiang Wu
Jianchao Yang
Xiaobing Liu
11
5
0
27 Apr 2021
Soft-Label Anonymous Gastric X-ray Image Distillation
Soft-Label Anonymous Gastric X-ray Image Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
37
51
0
07 Apr 2021
Risk Bounds for Learning via Hilbert Coresets
Risk Bounds for Learning via Hilbert Coresets
Spencer Douglas
Piyush Kumar
R. Prasanth
11
0
0
29 Mar 2021
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient
  Deep Model Training
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient Deep Model Training
Krishnateja Killamsetty
D. Sivasubramanian
Ganesh Ramakrishnan
A. De
Rishabh K. Iyer
OOD
86
188
0
27 Feb 2021
GLISTER: Generalization based Data Subset Selection for Efficient and
  Robust Learning
GLISTER: Generalization based Data Subset Selection for Efficient and Robust Learning
Krishnateja Killamsetty
D. Sivasubramanian
Ganesh Ramakrishnan
Rishabh Iyer University of Texas at Dallas
13
199
0
19 Dec 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
30
172
0
23 Apr 2020
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
22
15
0
26 Jun 2018
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1