Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.00420
Cited By
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
1 February 2018
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples"
50 / 733 papers shown
Title
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
33
9
0
31 Oct 2019
A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning
Xuanqing Liu
Si Si
Xiaojin Zhu
Yang Li
Cho-Jui Hsieh
AAML
35
78
0
30 Oct 2019
Understanding and Quantifying Adversarial Examples Existence in Linear Classification
Xupeng Shi
A. Ding
AAML
16
3
0
27 Oct 2019
Detection of Adversarial Attacks and Characterization of Adversarial Subspace
Mohammad Esmaeilpour
P. Cardinal
Alessandro Lameiras Koerich
AAML
27
17
0
26 Oct 2019
Effectiveness of random deep feature selection for securing image manipulation detectors against adversarial examples
Mauro Barni
Ehsan Nowroozi
B. Tondi
Bowen Zhang
AAML
13
17
0
25 Oct 2019
Label Smoothing and Logit Squeezing: A Replacement for Adversarial Training?
Ali Shafahi
Amin Ghiasi
Furong Huang
Tom Goldstein
AAML
27
39
0
25 Oct 2019
Adversarial Example Detection by Classification for Deep Speech Recognition
Saeid Samizade
Zheng-Hua Tan
Chao Shen
X. Guan
AAML
18
35
0
22 Oct 2019
An Alternative Surrogate Loss for PGD-based Adversarial Testing
Sven Gowal
J. Uesato
Chongli Qin
Po-Sen Huang
Timothy A. Mann
Pushmeet Kohli
AAML
50
89
0
21 Oct 2019
Adversarial T-shirt! Evading Person Detectors in A Physical World
Kaidi Xu
Gaoyuan Zhang
Sijia Liu
Quanfu Fan
Mengshu Sun
Hongge Chen
Pin-Yu Chen
Yanzhi Wang
Xue Lin
AAML
16
30
0
18 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Perturbations are not Enough: Generating Adversarial Examples with Spatial Distortions
He Zhao
Trung Le
Paul Montague
O. Vel
Tamas Abraham
Dinh Q. Phung
AAML
28
8
0
03 Oct 2019
Deep Neural Rejection against Adversarial Examples
Angelo Sotgiu
Ambra Demontis
Marco Melis
Battista Biggio
Giorgio Fumera
Xiaoyi Feng
Fabio Roli
AAML
22
68
0
01 Oct 2019
Role of Spatial Context in Adversarial Robustness for Object Detection
Aniruddha Saha
Akshayvarun Subramanya
Koninika Patil
Hamed Pirsiavash
ObjD
AAML
32
53
0
30 Sep 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
27
92
0
29 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
28
103
0
25 Sep 2019
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack
Minhao Cheng
Simranjit Singh
Patrick H. Chen
Pin-Yu Chen
Sijia Liu
Cho-Jui Hsieh
AAML
134
219
0
24 Sep 2019
Defending Against Physically Realizable Attacks on Image Classification
Tong Wu
Liang Tong
Yevgeniy Vorobeychik
AAML
25
125
0
20 Sep 2019
Absum: Simple Regularization Method for Reducing Structural Sensitivity of Convolutional Neural Networks
Sekitoshi Kanai
Yasutoshi Ida
Yasuhiro Fujiwara
Masanori Yamada
S. Adachi
AAML
23
1
0
19 Sep 2019
Sparse and Imperceivable Adversarial Attacks
Francesco Croce
Matthias Hein
AAML
39
199
0
11 Sep 2019
Protecting Neural Networks with Hierarchical Random Switching: Towards Better Robustness-Accuracy Trade-off for Stochastic Defenses
Tianlin Li
Siyue Wang
Pin-Yu Chen
Yanzhi Wang
Brian Kulis
Xue Lin
S. Chin
AAML
16
42
0
20 Aug 2019
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
34
176
0
17 Aug 2019
BlurNet: Defense by Filtering the Feature Maps
Ravi Raju
Mikko H. Lipasti
AAML
42
15
0
06 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
23
230
0
24 Jul 2019
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
23
130
0
24 Jul 2019
Structure-Invariant Testing for Machine Translation
Pinjia He
Clara Meister
Z. Su
27
104
0
19 Jul 2019
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
19
71
0
05 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
43
475
0
03 Jul 2019
Accurate, reliable and fast robustness evaluation
Wieland Brendel
Jonas Rauber
Matthias Kümmerer
Ivan Ustyuzhaninov
Matthias Bethge
AAML
OOD
13
113
0
01 Jul 2019
Evolving Robust Neural Architectures to Defend from Adversarial Attacks
Shashank Kotyan
Danilo Vasconcellos Vargas
OOD
AAML
24
36
0
27 Jun 2019
Defending Adversarial Attacks by Correcting logits
Yifeng Li
Lingxi Xie
Ya Zhang
Rui Zhang
Yanfeng Wang
Qi Tian
AAML
29
5
0
26 Jun 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
21
104
0
25 Jun 2019
Defending Against Adversarial Examples with K-Nearest Neighbor
Chawin Sitawarin
David Wagner
AAML
11
29
0
23 Jun 2019
Defending Against Adversarial Attacks Using Random Forests
Yifan Ding
Liqiang Wang
Huan Zhang
Jinfeng Yi
Deliang Fan
Boqing Gong
AAML
21
14
0
16 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
324
0
13 Jun 2019
A Computationally Efficient Method for Defending Adversarial Deep Learning Attacks
R. Sahay
Rehana Mahfuz
Aly El Gamal
AAML
22
5
0
13 Jun 2019
E-LPIPS: Robust Perceptual Image Similarity via Random Transformation Ensembles
M. Kettunen
Erik Härkönen
J. Lehtinen
AAML
32
61
0
10 Jun 2019
Evaluating the Robustness of Nearest Neighbor Classifiers: A Primal-Dual Perspective
Lu Wang
Xuanqing Liu
Jinfeng Yi
Zhi-Hua Zhou
Cho-Jui Hsieh
AAML
28
22
0
10 Jun 2019
Robustness Verification of Tree-based Models
Hongge Chen
Huan Zhang
Si Si
Yang Li
Duane S. Boning
Cho-Jui Hsieh
AAML
17
76
0
10 Jun 2019
Improving Neural Language Modeling via Adversarial Training
Dilin Wang
Chengyue Gong
Qiang Liu
AAML
43
115
0
10 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
39
536
0
09 Jun 2019
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Bohao Li
AAML
25
35
0
09 Jun 2019
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks
Maksym Andriushchenko
Matthias Hein
25
61
0
08 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
22
101
0
08 Jun 2019
Robustness for Non-Parametric Classification: A Generic Attack and Defense
Yao-Yuan Yang
Cyrus Rashtchian
Yizhen Wang
Kamalika Chaudhuri
SILM
AAML
34
42
0
07 Jun 2019
Enhancing Gradient-based Attacks with Symbolic Intervals
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
AAML
28
15
0
05 Jun 2019
Multi-way Encoding for Robustness
Donghyun Kim
Sarah Adel Bargal
Jianming Zhang
Stan Sclaroff
AAML
18
2
0
05 Jun 2019
Enhancing Transformation-based Defenses using a Distribution Classifier
C. Kou
H. Lee
E. Chang
Teck Khim Ng
37
3
0
01 Jun 2019
Bypassing Backdoor Detection Algorithms in Deep Learning
T. Tan
Reza Shokri
FedML
AAML
39
149
0
31 May 2019
Robust Sparse Regularization: Simultaneously Optimizing Neural Network Robustness and Compactness
Adnan Siraj Rakin
Zhezhi He
Li Yang
Yanzhi Wang
Liqiang Wang
Deliang Fan
AAML
40
21
0
30 May 2019
Previous
1
2
3
...
11
12
13
14
15
Next