Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.07873
Cited By
Gaussian variational approximation for high-dimensional state space models
24 January 2018
M. Quiroz
David J. Nott
Robert Kohn
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian variational approximation for high-dimensional state space models"
22 / 22 papers shown
Title
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
38
0
0
03 Oct 2024
Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
48
5
0
25 Jun 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
30
2
0
19 Jan 2024
ABC-based Forecasting in State Space Models
Chaya Weerasinghe
Rubén Loaiza-Maya
G. Martin
David T. Frazier
16
1
0
02 Nov 2023
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
30
13
0
05 Oct 2023
Stochastic Variational Inference for GARCH Models
Hanwen Xuan
Luca Maestrini
F. Chen
Clara Grazian
17
2
0
29 Aug 2023
Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent
Tianle Liu
Promit Ghosal
Krishnakumar Balasubramanian
Natesh S. Pillai
24
9
0
23 May 2023
Accelerate Langevin Sampling with Birth-Death process and Exploration Component
Lezhi Tan
Jianfeng Lu
17
3
0
06 May 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
24
20
0
10 Apr 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
11
17
0
21 Feb 2023
Structured variational approximations with skew normal decomposable graphical models
Roberto Salomone
Xue Yu
David J. Nott
Robert Kohn
19
2
0
07 Feb 2023
Federated Variational Inference Methods for Structured Latent Variable Models
Conor Hassan
Roberto Salomone
Kerrie Mengersen
BDL
FedML
21
4
0
07 Feb 2023
Efficient variational approximations for state space models
Rubén Loaiza-Maya
D. Nibbering
6
1
0
20 Oct 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Z. Ringel
30
50
0
31 Dec 2021
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
36
26
0
20 Dec 2021
Variational Bayes in State Space Models: Inferential and Predictive Accuracy
David T. Frazier
Rubén Loaiza-Maya
G. Martin
11
13
0
23 Jun 2021
Variational Approximation of Factor Stochastic Volatility Models
David Gunawan
Robert Kohn
David J. Nott
9
7
0
13 Oct 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
40
17
0
14 Apr 2020
High-dimensional copula variational approximation through transformation
M. Smith
Rubén Loaiza-Maya
David J. Nott
17
33
0
16 Apr 2019
Comparison of Deep Neural Networks and Deep Hierarchical Models for Spatio-Temporal Data
C. Wikle
BDL
35
19
0
22 Feb 2019
Variance reduction properties of the reparameterization trick
Ming Xu
M. Quiroz
Robert Kohn
S. Sisson
AAML
16
65
0
27 Sep 2018
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
14
57
0
09 Feb 2018
1