ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.01586
  4. Cited By
A practical tutorial on autoencoders for nonlinear feature fusion:
  Taxonomy, models, software and guidelines

A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines

4 January 2018
D. Charte
F. Charte
S. García
M. J. D. Jesus
Francisco Herrera
ArXivPDFHTML

Papers citing "A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines"

14 / 14 papers shown
Title
Enhanced Multimodal Hate Video Detection via Channel-wise and Modality-wise Fusion
Enhanced Multimodal Hate Video Detection via Channel-wise and Modality-wise Fusion
Yinghui Zhang
Tailin Chen
Yuchen Zhang
Zeyu Fu
2
0
0
17 May 2025
Towards Active Participant Centric Vertical Federated Learning: Some Representations May Be All You Need
Towards Active Participant Centric Vertical Federated Learning: Some Representations May Be All You Need
Jon Irureta
Jon Imaz
Aizea Lojo
Javier Fernandez-Marques
Marco González
Iñigo Perona
FedML
93
1
0
20 Feb 2025
Reducing Data Complexity using Autoencoders with Class-informed Loss
  Functions
Reducing Data Complexity using Autoencoders with Class-informed Loss Functions
D. Charte
F. Charte
Francisco Herrera
13
14
0
11 Nov 2021
A machine learning approach for fighting the curse of dimensionality in
  global optimization
A machine learning approach for fighting the curse of dimensionality in global optimization
J. Schumann
Alejandro M. Aragón
23
2
0
28 Oct 2021
Hybrid analysis and modeling, eclecticism, and multifidelity computing
  toward digital twin revolution
Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution
Omer San
Adil Rasheed
T. Kvamsdal
48
50
0
26 Mar 2021
Deconvolution-and-convolution Networks
Deconvolution-and-convolution Networks
Yimin Yang
Wandong Zhang
Jonathan Wu
Will Zhao
Ao Chen
18
8
0
22 Mar 2021
Deep Learning for Medical Anomaly Detection -- A Survey
Deep Learning for Medical Anomaly Detection -- A Survey
Tharindu Fernando
Harshala Gammulle
Simon Denman
Sridha Sridharan
Clinton Fookes
OOD
20
271
0
04 Dec 2020
Generative Capacity of Probabilistic Protein Sequence Models
Generative Capacity of Probabilistic Protein Sequence Models
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
35
34
0
03 Dec 2020
Improving Self-Organizing Maps with Unsupervised Feature Extraction
Improving Self-Organizing Maps with Unsupervised Feature Extraction
Lyes Khacef
Laurent Rodriguez
Benoit Miramond
SSL
DRL
24
15
0
04 Sep 2020
An analysis on the use of autoencoders for representation learning:
  fundamentals, learning task case studies, explainability and challenges
An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
SSL
OOD
27
51
0
21 May 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,111
0
22 Oct 2019
Blood lactate concentration prediction in critical care patients:
  handling missing values
Blood lactate concentration prediction in critical care patients: handling missing values
B. Mamandipoor
Matthias Neumayer
M. Moz
Jens Grossklags
31
5
0
03 Oct 2019
Multimodal Deep Network Embedding with Integrated Structure and
  Attribute Information
Multimodal Deep Network Embedding with Integrated Structure and Attribute Information
Conghui Zheng
Li Pan
Peng Wu
15
22
0
28 Mar 2019
Language as a Latent Variable: Discrete Generative Models for Sentence
  Compression
Language as a Latent Variable: Discrete Generative Models for Sentence Compression
Yishu Miao
Phil Blunsom
201
223
0
23 Sep 2016
1