Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.01236
Cited By
Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems
4 January 2018
M. Raissi
P. Perdikaris
George Karniadakis
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems"
50 / 133 papers shown
Title
A Neural Network Ensemble Approach to System Identification
Elisa Negrini
G. Citti
L. Capogna
22
2
0
15 Oct 2021
Learning Dynamics from Noisy Measurements using Deep Learning with a Runge-Kutta Constraint
P. Goyal
P. Benner
43
9
0
23 Sep 2021
Recurrent Neural Networks for Partially Observed Dynamical Systems
Uttam Bhat
S. Munch
PINN
AI4CE
19
8
0
21 Sep 2021
Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
Franck Djeumou
Cyrus Neary
Eric Goubault
S. Putot
Ufuk Topcu
PINN
AI4CE
47
69
0
14 Sep 2021
Physics-based machine learning for modeling stochastic IP3-dependent calcium dynamics
Oliver K. Ernst
T. Bartol
T. Sejnowski
E. Mjolsness
14
0
0
10 Sep 2021
DAE-PINN: A Physics-Informed Neural Network Model for Simulating Differential-Algebraic Equations with Application to Power Networks
Christian Moya
Guang Lin
AI4CE
PINN
62
37
0
09 Sep 2021
GFINNs: GENERIC Formalism Informed Neural Networks for Deterministic and Stochastic Dynamical Systems
Zhen Zhang
Yeonjong Shin
George Karniadakis
AI4CE
31
52
0
31 Aug 2021
Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural Ordinary Differential Equations
Alec J. Linot
M. Graham
22
48
0
31 Aug 2021
A Framework for Machine Learning of Model Error in Dynamical Systems
Matthew E. Levine
Andrew M. Stuart
27
67
0
14 Jul 2021
Deep Neural Network Modeling of Unknown Partial Differential Equations in Nodal Space
Zhen Chen
V. Churchill
Kailiang Wu
D. Xiu
AI4CE
14
47
0
07 Jun 2021
Learning particle swarming models from data with Gaussian processes
Jinchao Feng
Charles Kulick
Yunxiang Ren
Sui Tang
31
5
0
04 Jun 2021
MAGI-X: Manifold-Constrained Gaussian Process Inference for Unknown System Dynamics
Chaofan Huang
Simin Ma
Shihao Yang
30
0
0
27 May 2021
Learning Runge-Kutta Integration Schemes for ODE Simulation and Identification
Said Ouala
L. Debreu
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
26
4
0
11 May 2021
Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired Dictionary-based Sparse Regression Approach
P. Goyal
P. Benner
33
48
0
11 May 2021
Granger Causality: A Review and Recent Advances
Ali Shojaie
E. Fox
CML
AI4TS
37
260
0
05 May 2021
Dominant motion identification of multi-particle system using deep learning from video
Yayati Jadhav
Amir Barati Farimani
29
4
0
26 Apr 2021
A Temporal Kernel Approach for Deep Learning with Continuous-time Information
Da Xu
Chuanwei Ruan
Evren Körpeoglu
Sushant Kumar
Kannan Achan
SyDa
AI4TS
22
4
0
28 Mar 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
26
20
0
21 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
Meta-Solver for Neural Ordinary Differential Equations
Julia Gusak
A. Katrutsa
Talgat Daulbaev
A. Cichocki
Ivan Oseledets
16
2
0
15 Mar 2021
Data-driven Prediction of General Hamiltonian Dynamics via Learning Exactly-Symplectic Maps
Ren-Chuen Chen
Molei Tao
32
51
0
09 Mar 2021
Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data
Mohamed Aziz Bhouri
P. Perdikaris
31
20
0
04 Mar 2021
SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
PINN
AI4CE
29
76
0
25 Feb 2021
Learning elliptic partial differential equations with randomized linear algebra
Nicolas Boullé
Alex Townsend
19
41
0
31 Jan 2021
Learning Interaction Kernels for Agent Systems on Riemannian Manifolds
Mauro Maggioni
Jason D Miller
H. Qui
Ming Zhong
19
8
0
30 Jan 2021
STENCIL-NET: Data-driven solution-adaptive discretization of partial differential equations
S. Maddu
D. Sturm
B. Cheeseman
Christian L. Müller
I. Sbalzarini
32
8
0
15 Jan 2021
Accuracy and Architecture Studies of Residual Neural Network solving Ordinary Differential Equations
Changxin Qiu
Aaron Bendickson
Joshua Kalyanapu
Jue Yan
10
1
0
10 Jan 2021
Constrained Block Nonlinear Neural Dynamical Models
Elliott Skomski
Soumya Vasisht
Colby Wight
Aaron Tuor
Ján Drgoňa
D. Vrabie
AI4CE
32
15
0
06 Jan 2021
Reduced Order Modeling using Shallow ReLU Networks with Grassmann Layers
K. Bollinger
Hayden Schaeffer
9
2
0
17 Dec 2020
A Data Driven Method for Computing Quasipotentials
Bo Lin
Qianxiao Li
W. Ren
16
13
0
13 Dec 2020
Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks
Pengzhan Jin
Zhen Zhang
Ioannis G. Kevrekidis
George Karniadakis
38
50
0
05 Dec 2020
Nested Mixture of Experts: Cooperative and Competitive Learning of Hybrid Dynamical System
Junhyeok Ahn
Luis Sentis
34
3
0
20 Nov 2020
Data-driven Identification of 2D Partial Differential Equations using extracted physical features
Kazem Meidani
A. Farimani
21
17
0
20 Oct 2020
Operator Inference and Physics-Informed Learning of Low-Dimensional Models for Incompressible Flows
P. Benner
P. Goyal
Jan Heiland
I. P. Duff
AI4CE
9
26
0
13 Oct 2020
Learning Theory for Inferring Interaction Kernels in Second-Order Interacting Agent Systems
Jason D Miller
Sui Tang
Ming Zhong
Mauro Maggioni
26
18
0
08 Oct 2020
Knowledge-Based Learning of Nonlinear Dynamics and Chaos
Tom Z. Jiahao
M. Hsieh
Eric Forgoston
29
31
0
07 Oct 2020
Discovery of Governing Equations with Recursive Deep Neural Networks
Jia Zhao
Jarrod Mau
PINN
32
6
0
24 Sep 2020
OnsagerNet: Learning Stable and Interpretable Dynamics using a Generalized Onsager Principle
Haijun Yu
Xinyuan Tian
Weinan E
Qianxiao Li
AI4CE
30
42
0
06 Sep 2020
Variational Deep Learning for the Identification and Reconstruction of Chaotic and Stochastic Dynamical Systems from Noisy and Partial Observations
Duong Nguyen
Said Ouala
Lucas Drumetz
Ronan Fablet
15
13
0
04 Sep 2020
Bridging the Gap: Machine Learning to Resolve Improperly Modeled Dynamics
Maan Qraitem
D. Kularatne
Eric Forgoston
M. A. Hsieh
AI4CE
31
10
0
23 Aug 2020
Hierarchical Deep Learning of Multiscale Differential Equation Time-Steppers
Yuying Liu
N. Kutz
Steven L. Brunton
AI4TS
12
75
0
22 Aug 2020
Hypersolvers: Toward Fast Continuous-Depth Models
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
BDL
AI4CE
22
46
0
19 Jul 2020
Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks
Colby Wight
Jia Zhao
20
219
0
09 Jul 2020
Phase space learning with neural networks
Jaime Lopez Garcia
Ángel Rivero Jiménez
AI4CE
9
0
0
22 Jun 2020
Neural Vortex Method: from Finite Lagrangian Particles to Infinite Dimensional Eulerian Dynamics
S. Xiong
Xingzhe He
Yunjin Tong
Yitong Deng
Bo Zhu
21
11
0
07 Jun 2020
Data-driven learning of non-autonomous systems
Tong Qin
Zhen Chen
J. Jakeman
D. Xiu
10
19
0
02 Jun 2020
Revealing hidden dynamics from time-series data by ODENet
Pipi Hu
Wuyue Yang
Yi Zhu
L. Hong
AI4TS
24
35
0
11 May 2020
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
Christopher J. Arthurs
A. King
PINN
43
51
0
02 May 2020
Bayesian differential programming for robust systems identification under uncertainty
Yibo Yang
Mohamed Aziz Bhouri
P. Perdikaris
OOD
33
32
0
15 Apr 2020
Solving Newton's Equations of Motion with Large Timesteps using Recurrent Neural Networks based Operators
J. Kadupitiya
Geoffrey C. Fox
V. Jadhao
AI4CE
17
20
0
12 Apr 2020
Previous
1
2
3
Next