ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.06493
17
20

Solving Newton's Equations of Motion with Large Timesteps using Recurrent Neural Networks based Operators

12 April 2020
J. Kadupitiya
Geoffrey C. Fox
V. Jadhao
    AI4CE
ArXivPDFHTML
Abstract

Classical molecular dynamics simulations are based on solving Newton's equations of motion. Using a small timestep, numerical integrators such as Verlet generate trajectories of particles as solutions to Newton's equations. We introduce operators derived using recurrent neural networks that accurately solve Newton's equations utilizing sequences of past trajectory data, and produce energy-conserving dynamics of particles using timesteps up to 4000 times larger compared to the Verlet timestep. We demonstrate significant speedup in many example problems including 3D systems of up to 16 particles.

View on arXiv
Comments on this paper