Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.07897
Cited By
Non-convex Optimization for Machine Learning
21 December 2017
Prateek Jain
Purushottam Kar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-convex Optimization for Machine Learning"
50 / 58 papers shown
Title
Unveiling and Mitigating Adversarial Vulnerabilities in Iterative Optimizers
Elad Sofer
Tomer Shaked
Caroline Chaux
Nir Shlezinger
AAML
45
0
0
26 Apr 2025
A Piecewise Lyapunov Analysis of Sub-quadratic SGD: Applications to Robust and Quantile Regression
Yixuan Zhang
Dongyan
Yudong Chen
Qiaomin Xie
24
0
0
11 Apr 2025
Semiparametric Counterfactual Regression
Kwangho Kim
OffRL
33
0
0
03 Apr 2025
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
89
1
0
25 Nov 2024
BoBa: Boosting Backdoor Detection through Data Distribution Inference in Federated Learning
Ning Wang
Shanghao Shi
Yang Xiao
Yimin Chen
Y. T. Hou
W. Lou
FedML
AAML
36
1
0
12 Jul 2024
Towards Efficient Risk-Sensitive Policy Gradient: An Iteration Complexity Analysis
Rui Liu
Erfaun Noorani
Pratap Tokekar
John S. Baras
23
1
0
13 Mar 2024
VideoPrism: A Foundational Visual Encoder for Video Understanding
Long Zhao
N. B. Gundavarapu
Liangzhe Yuan
Hao Zhou
Shen Yan
...
Huisheng Wang
Hartwig Adam
Mikhail Sirotenko
Ting Liu
Boqing Gong
VGen
41
29
0
20 Feb 2024
Quantum Langevin Dynamics for Optimization
Zherui Chen
Yuchen Lu
Hao Wang
Yizhou Liu
Tongyang Li
AI4CE
21
9
0
27 Nov 2023
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved Calibration and Model Selection in Unsupervised Domain Adaptation
Taejong Joo
Diego Klabjan
43
1
0
16 Oct 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Newton Method-based Subspace Support Vector Data Description
Fahad Sohrab
Firas Laakom
Moncef Gabbouj
11
5
0
25 Sep 2023
Massively Parallel Continuous Local Search for Hybrid SAT Solving on GPUs
Yunuo Cen
Zhiwei Zhang
Xuanyao Fong
14
1
0
29 Aug 2023
Discriminative Feature Attributions: Bridging Post Hoc Explainability and Inherent Interpretability
Usha Bhalla
Suraj Srinivas
Himabindu Lakkaraju
FAtt
CML
29
6
0
27 Jul 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
31
6
0
08 Mar 2023
Maximum Optimality Margin: A Unified Approach for Contextual Linear Programming and Inverse Linear Programming
Chunlin Sun
Shang Liu
Xiaocheng Li
19
9
0
26 Jan 2023
Optimal Algorithms for Latent Bandits with Cluster Structure
S. Pal
A. Suggala
Karthikeyan Shanmugam
Prateek Jain
31
9
0
17 Jan 2023
Global Optimization with Parametric Function Approximation
Chong Liu
Yu-Xiang Wang
28
7
0
16 Nov 2022
Stochastic noise can be helpful for variational quantum algorithms
Junyu Liu
Frederik Wilde
A. A. Mele
Liang Jiang
Jens Eisert
Jens Eisert
24
34
0
13 Oct 2022
Improved Generalization Bound and Learning of Sparsity Patterns for Data-Driven Low-Rank Approximation
Shinsaku Sakaue
Taihei Oki
19
3
0
17 Sep 2022
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
51
51
0
12 Sep 2022
Online Low Rank Matrix Completion
Prateek Jain
S. Pal
42
9
0
08 Sep 2022
Large-displacement 3D Object Tracking with Hybrid Non-local Optimization
Xuhui Tian
Xinran Lin
Fan Zhong
Xueying Qin
31
7
0
26 Jul 2022
Metric Optimization in Penner Coordinates
Ryan Capouellez
Denis Zorin
11
3
0
23 Jun 2022
Efficient Minimax Optimal Global Optimization of Lipschitz Continuous Multivariate Functions
Kaan Gokcesu
Hakan Gokcesu
15
2
0
06 Jun 2022
Randomized Policy Optimization for Optimal Stopping
Xinyi Guan
V. Mišić
11
2
0
25 Mar 2022
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
Federated Optimization of Smooth Loss Functions
Ali Jadbabaie
A. Makur
Devavrat Shah
FedML
21
7
0
06 Jan 2022
On Asymptotic Linear Convergence of Projected Gradient Descent for Constrained Least Squares
Trung Vu
Raviv Raich
15
13
0
22 Dec 2021
Variance Reduction based Experience Replay for Policy Optimization
Hua Zheng
Wei Xie
M. Feng
OffRL
31
2
0
17 Oct 2021
Optimization with Constraint Learning: A Framework and Survey
Adejuyigbe O. Fajemisin
Donato Maragno
D. Hertog
58
46
0
05 Oct 2021
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
46
35
0
24 Sep 2021
Towards Robustness Against Natural Language Word Substitutions
Xinshuai Dong
A. Luu
Rongrong Ji
Hong Liu
SILM
AAML
29
113
0
28 Jul 2021
Point-Cloud Deep Learning of Porous Media for Permeability Prediction
Ali Kashefi
T. Mukerji
3DPC
AI4CE
15
34
0
18 Jul 2021
Data-informed Deep Optimization
Lulu Zhang
Z. Xu
Yaoyu Zhang
AI4CE
27
3
0
17 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
Accelerating variational quantum algorithms with multiple quantum processors
Yuxuan Du
Yan Qian
Dacheng Tao
9
8
0
24 Jun 2021
A Survey on Fault-tolerance in Distributed Optimization and Machine Learning
Shuo Liu
AI4CE
OOD
47
13
0
16 Jun 2021
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
32
18
0
10 Jan 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
23
25
0
04 Jan 2021
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
34
165
0
15 Dec 2020
Locally Linear Embedding and its Variants: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
14
28
0
22 Nov 2020
GPU Accelerated Convex Approximations for Fast Multi-Agent Trajectory Optimization
Fatemeh Rastgar
Houman Masnavi
Jatan Shrestha
Karl Kruusamäe
A. Aabloo
A. K. Singh
16
8
0
09 Nov 2020
Gradient-Based Empirical Risk Minimization using Local Polynomial Regression
Ali Jadbabaie
A. Makur
Devavrat Shah
28
6
0
04 Nov 2020
Accurate and Lightweight Image Super-Resolution with Model-Guided Deep Unfolding Network
Qiang Ning
W. Dong
Guangming Shi
Leida Li
Xin Li
21
44
0
14 Sep 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
31
125
0
25 Aug 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
8
34
0
09 Jun 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
19
113
0
18 May 2020
On the Sample Complexity and Optimization Landscape for Quadratic Feasibility Problems
Parth Thaker
Gautam Dasarathy
Angelia Nedić
16
5
0
04 Feb 2020
State Space Emulation and Annealed Sequential Monte Carlo for High Dimensional Optimization
Chencheng Cai
Rong Chen
11
0
0
17 Nov 2019
1
2
Next