ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.06760
  4. Cited By
Mining Point Cloud Local Structures by Kernel Correlation and Graph
  Pooling

Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling

19 December 2017
Yiru Shen
Chen Feng
Yaoqing Yang
Dong Tian
    3DPC
ArXivPDFHTML

Papers citing "Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling"

7 / 7 papers shown
Title
Geometric Deep Learning to Identify the Critical 3D Structural Features
  of the Optic Nerve Head for Glaucoma Diagnosis
Geometric Deep Learning to Identify the Critical 3D Structural Features of the Optic Nerve Head for Glaucoma Diagnosis
F. Braeu
Alexandre Hoang Thiery
T. A. Tun
A. Kadziauskiene
George Barbastathis
Tin Aung
M. Girard
3DPC
17
17
0
14 Apr 2022
Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature
  Aggregation
Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature Aggregation
Jiajing Chen
Burak Kakillioglu
Senem Velipasalar
3DPC
34
36
0
14 Nov 2021
PointGrow: Autoregressively Learned Point Cloud Generation with
  Self-Attention
PointGrow: Autoregressively Learned Point Cloud Generation with Self-Attention
Yongbin Sun
Yue Wang
Ziwei Liu
J. Siegel
Sanjay E. Sarma
3DPC
28
195
0
12 Oct 2018
PVNet: A Joint Convolutional Network of Point Cloud and Multi-View for
  3D Shape Recognition
PVNet: A Joint Convolutional Network of Point Cloud and Multi-View for 3D Shape Recognition
Haoxuan You
Yifan Feng
Rongrong Ji
Yue Gao
3DPC
36
169
0
23 Aug 2018
Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point
  Clouds
Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds
Pedro Hermosilla
Tobias Ritschel
Pere-Pau Vázquez
À. Vinacua
Timo Ropinski
3DPC
6
257
0
05 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1