Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.06568
Cited By
ES Is More Than Just a Traditional Finite-Difference Approximator
18 December 2017
Joel Lehman
Jay Chen
Jeff Clune
Kenneth O. Stanley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ES Is More Than Just a Traditional Finite-Difference Approximator"
24 / 24 papers shown
Title
Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis
Akarsh Kumar
Jeff Clune
Joel Lehman
Kenneth O. Stanley
OOD
21
0
0
16 May 2025
ETGL-DDPG: A Deep Deterministic Policy Gradient Algorithm for Sparse Reward Continuous Control
Ehsan Futuhi
Shayan Karimi
Chao Gao
Martin Müller
43
1
0
07 Oct 2024
Evolutionary Strategy Guided Reinforcement Learning via MultiBuffer Communication
Adam Callaghan
Karl Mason
Patrick Mannion
37
2
0
20 Jun 2023
EvoTorch: Scalable Evolutionary Computation in Python
N. E. Toklu
Timothy James Atkinson
Vojtvech Micka
Paweł Liskowski
R. Srivastava
22
12
0
24 Feb 2023
Training Diverse High-Dimensional Controllers by Scaling Covariance Matrix Adaptation MAP-Annealing
Bryon Tjanaka
Matthew C. Fontaine
David H. Lee
Aniruddha Kalkar
Stefanos Nikolaidis
68
8
0
06 Oct 2022
Learning Discrete Structured Variational Auto-Encoder using Natural Evolution Strategies
Alon Berliner
Guy Rotman
Yossi Adi
Roi Reichart
Tamir Hazan
BDL
DRL
24
4
0
03 May 2022
TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning
Konstantin Sozykin
Andrei Chertkov
R. Schutski
Anh-Huy Phan
A. Cichocki
Ivan Oseledets
14
35
0
30 Apr 2022
Approximating Gradients for Differentiable Quality Diversity in Reinforcement Learning
Bryon Tjanaka
Matthew C. Fontaine
Julian Togelius
Stefanos Nikolaidis
38
50
0
08 Feb 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
33
100
0
11 Jan 2022
Can Transfer Neuroevolution Tractably Solve Your Differential Equations?
Jian Cheng Wong
Abhishek Gupta
Yew-Soon Ong
28
21
0
06 Jan 2021
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
22
158
0
03 Feb 2020
Provably Robust Blackbox Optimization for Reinforcement Learning
K. Choromanski
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
Deepali Jain
Yuxiang Yang
Atil Iscen
Jasmine Hsu
Vikas Sindhwani
13
5
0
07 Mar 2019
Evolutionary Stochastic Gradient Descent for Optimization of Deep Neural Networks
Xiaodong Cui
Wei Zhang
Zoltán Tüske
M. Picheny
ODL
16
89
0
16 Oct 2018
CEM-RL: Combining evolutionary and gradient-based methods for policy search
Aloïs Pourchot
Olivier Sigaud
32
160
0
02 Oct 2018
Switching Isotropic and Directional Exploration with Parameter Space Noise in Deep Reinforcement Learning
Izumi Karino
Kazutoshi Tanaka
Ryuma Niiyama
Y. Kuniyoshi
19
3
0
18 Sep 2018
Towards Distributed Coevolutionary GANs
Abdullah Al-Dujaili
Tom Schmiedlechner
Erik Hemberg
Una-May O’Reilly
GAN
36
41
0
21 Jul 2018
Encoding Motion Primitives for Autonomous Vehicles using Virtual Velocity Constraints and Neural Network Scheduling
M. Plessen
17
1
0
05 Jul 2018
Multi-objective Model-based Policy Search for Data-efficient Learning with Sparse Rewards
Rituraj Kaushik
Konstantinos Chatzilygeroudis
Jean-Baptiste Mouret
31
19
0
25 Jun 2018
Challenges in High-dimensional Reinforcement Learning with Evolution Strategies
Nils Müller
Tobias Glasmachers
33
28
0
04 Jun 2018
Structured Evolution with Compact Architectures for Scalable Policy Optimization
K. Choromanski
Mark Rowland
Vikas Sindhwani
Richard Turner
Adrian Weller
22
147
0
06 Apr 2018
Policy Search in Continuous Action Domains: an Overview
Olivier Sigaud
F. Stulp
16
72
0
13 Mar 2018
Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari
P. Chrabaszcz
I. Loshchilov
Frank Hutter
32
99
0
24 Feb 2018
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
686
0
18 Dec 2017
On the Relationship Between the OpenAI Evolution Strategy and Stochastic Gradient Descent
Xingwen Zhang
Jeff Clune
Kenneth O. Stanley
25
57
0
18 Dec 2017
1