Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.06567
Cited By
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
18 December 2017
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning"
50 / 276 papers shown
Title
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
22
7
0
30 Jun 2021
Deep Multiagent Reinforcement Learning: Challenges and Directions
Annie Wong
Thomas Bäck
Anna V. Kononova
Aske Plaat
AI4CE
34
88
0
29 Jun 2021
Neuroevolution-Enhanced Multi-Objective Optimization for Mixed-Precision Quantization
Santiago Miret
Vui Seng Chua
Mattias Marder
Mariano Phielipp
Nilesh Jain
Somdeb Majumdar
23
8
0
14 Jun 2021
Black-box adversarial attacks using Evolution Strategies
Hao Qiu
Leonardo Lucio Custode
Giovanni Iacca
AAML
33
18
0
30 Apr 2021
MAGMA: An Optimization Framework for Mapping Multiple DNNs on Multiple Accelerator Cores
Sheng-Chun Kao
T. Krishna
24
50
0
28 Apr 2021
Policy Manifold Search: Exploring the Manifold Hypothesis for Diversity-based Neuroevolution
Nemanja Rakićević
Antoine Cully
Petar Kormushev
9
34
0
27 Apr 2021
ALF -- A Fitness-Based Artificial Life Form for Evolving Large-Scale Neural Networks
Rune Krauss
M. Merten
Mirco Bockholt
R. Drechsler
16
1
0
16 Apr 2021
A coevolutionary approach to deep multi-agent reinforcement learning
Daan Klijn
A. E. Eiben
16
8
0
12 Apr 2021
Selection-Expansion: A Unifying Framework for Motion-Planning and Diversity Search Algorithms
Alexandre Chenu
Nicolas Perrin-Gilbert
Stéphane Doncieux
Olivier Sigaud
12
1
0
10 Apr 2021
Quality Evolvability ES: Evolving Individuals With a Distribution of Well Performing and Diverse Offspring
Adam Katona
D. Franks
James Alfred Walker
31
5
0
19 Mar 2021
Policy Search with Rare Significant Events: Choosing the Right Partner to Cooperate with
Paul Ecoffet
Nicolas Fontbonne
Jean-Baptiste André
Nicolas Bredèche
8
3
0
11 Mar 2021
Meta Learning Black-Box Population-Based Optimizers
H. Gomes
B. Léger
Christian Gagné
42
13
0
05 Mar 2021
Neuroevolution in Deep Learning: The Role of Neutrality
E. López
16
4
0
16 Feb 2021
Diverse Auto-Curriculum is Critical for Successful Real-World Multiagent Learning Systems
Yaodong Yang
Jun Luo
Ying Wen
Oliver Slumbers
D. Graves
H. Ammar
Jun Wang
Matthew E. Taylor
21
35
0
15 Feb 2021
Derivative-Free Reinforcement Learning: A Review
Hong Qian
Yang Yu
OffRL
23
42
0
10 Feb 2021
Regenerating Soft Robots through Neural Cellular Automata
Kazuya Horibe
Kathryn Walker
S. Risi
21
27
0
04 Feb 2021
ES-ENAS: Efficient Evolutionary Optimization for Large Hybrid Search Spaces
Xingyou Song
K. Choromanski
Jack Parker-Holder
Yunhao Tang
Qiuyi Zhang
...
Deepali Jain
Wenbo Gao
Aldo Pacchiano
Tamás Sarlós
Yuxiang Yang
19
0
0
19 Jan 2021
Interpretable discovery of new semiconductors with machine learning
Hitarth Choubisa
Petar Todorović
Joao M. Pina
D. Parmar
Ziliang Li
Oleksandr Voznyy
Isaac Tamblyn
E. Sciences
23
11
0
12 Jan 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
35
2
0
04 Jan 2021
Evolving the Behavior of Machines: From Micro to Macroevolution
Jean-Baptiste Mouret
AI4CE
11
13
0
21 Dec 2020
Policy Manifold Search for Improving Diversity-based Neuroevolution
Nemanja Rakićević
Antoine Cully
Petar Kormushev
27
0
0
15 Dec 2020
An Efficient Asynchronous Method for Integrating Evolutionary and Gradient-based Policy Search
Kyunghyun Lee
Byeong-uk Lee
Ukcheol Shin
In So Kweon
30
22
0
10 Dec 2020
A multi-agent evolutionary robotics framework to train spiking neural networks
Souvik Das
Anirudh Shankar
Vaneet Aggarwal
19
1
0
07 Dec 2020
General Characterization of Agents by States they Visit
Anssi Kanervisto
Tomi Kinnunen
Ville Hautamaki
12
3
0
02 Dec 2020
Assessing and Accelerating Coverage in Deep Reinforcement Learning
Arpan Kusari
12
2
0
01 Dec 2020
Reward Conditioned Neural Movement Primitives for Population Based Variational Policy Optimization
M. Akbulut
Utku Bozdoğan
Ahmet E. Tekden
Emre Ugur
21
5
0
09 Nov 2020
Machine versus Human Attention in Deep Reinforcement Learning Tasks
Sihang Guo
Ruohan Zhang
Bo Liu
Yifeng Zhu
M. Hayhoe
D. Ballard
Peter Stone
OffRL
24
25
0
29 Oct 2020
Learning Guidance Rewards with Trajectory-space Smoothing
Tanmay Gangwani
Yuanshuo Zhou
Jian Peng
26
33
0
23 Oct 2020
Competitiveness of MAP-Elites against Proximal Policy Optimization on locomotion tasks in deterministic simulations
Szymon Brych
Antoine Cully
8
4
0
17 Sep 2020
Evolutionary Selective Imitation: Interpretable Agents by Imitation Learning Without a Demonstrator
Roy Eliya
J. Herrmann
14
2
0
17 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
36
79
0
17 Sep 2020
RECOApy: Data recording, pre-processing and phonetic transcription for end-to-end speech-based applications
Adriana Stan
31
5
0
11 Sep 2020
Sample-Efficient Automated Deep Reinforcement Learning
Jörg Franke
Gregor Koehler
André Biedenkapp
Frank Hutter
31
39
0
03 Sep 2020
CLAN: Continuous Learning using Asynchronous Neuroevolution on Commodity Edge Devices
Parth Mannan
A. Samajdar
T. Krishna
31
2
0
27 Aug 2020
Correspondence between neuroevolution and gradient descent
S. Whitelam
V. Selin
Sang-Won Park
Isaac Tamblyn
17
18
0
15 Aug 2020
Lights and Shadows in Evolutionary Deep Learning: Taxonomy, Critical Methodological Analysis, Cases of Study, Learned Lessons, Recommendations and Challenges
Aritz D. Martinez
Javier Del Ser
Esther Villar-Rodriguez
E. Osaba
Javier Poyatos
Siham Tabik
Daniel Molina
Francisco Herrera
35
26
0
09 Aug 2020
Hierarchical Deep Reinforcement Learning Approach for Multi-Objective Scheduling With Varying Queue Sizes
Yoni Birman
Ziv Ido
Gilad Katz
A. Shabtai
23
3
0
17 Jul 2020
OccamNet: A Fast Neural Model for Symbolic Regression at Scale
Owen Dugan
Rumen Dangovski
Allan dos Santos Costa
Samuel Kim
Pawan Goyal
J. Jacobson
M. Soljavcić
26
11
0
16 Jul 2020
Application of Neuroevolution in Autonomous Cars
G. Sainath
S. Vignesh
S. Siddarth
G. Suganya
11
6
0
26 Jun 2020
An adaptive stochastic gradient-free approach for high-dimensional blackbox optimization
Anton Dereventsov
Clayton Webster
Joseph Daws
22
10
0
18 Jun 2020
Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges
E. Galván
P. Mooney
27
129
0
09 Jun 2020
Generative Design of Hardware-aware DNNs
Sheng-Chun Kao
Arun Ramamurthy
T. Krishna
MQ
19
2
0
06 Jun 2020
The Adversarial Resilience Learning Architecture for AI-based Modelling, Exploration, and Operation of Complex Cyber-Physical Systems
Eric M. S. P. Veith
Nils Wenninghoff
Emilie Frost
18
5
0
27 May 2020
Visual Analytics and Human Involvement in Machine Learning
Salomon Eisler
Joachim Meyer
11
6
0
12 May 2020
RSO: A Gradient Free Sampling Based Approach For Training Deep Neural Networks
Rohun Tripathi
Bharat Singh
14
5
0
12 May 2020
Smooth Exploration for Robotic Reinforcement Learning
Antonin Raffin
Jens Kober
F. Stulp
32
57
0
12 May 2020
Accelerating Deep Neuroevolution on Distributed FPGAs for Reinforcement Learning Problems
Alexis Asseman
Nicolas Antoine
A. Ozcan
24
4
0
10 May 2020
Safe Reinforcement Learning through Meta-learned Instincts
Djordje Grbic
S. Risi
18
7
0
06 May 2020
Generating and Adapting to Diverse Ad-Hoc Cooperation Agents in Hanabi
Rodrigo Canaan
Xianbo Gao
Julian Togelius
Andy Nealen
Stefan Menzel
12
11
0
28 Apr 2020
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
350
0
27 Apr 2020
Previous
1
2
3
4
5
6
Next