ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.03950
  4. Cited By
Saving Gradient and Negative Curvature Computations: Finding Local
  Minima More Efficiently

Saving Gradient and Negative Curvature Computations: Finding Local Minima More Efficiently

11 December 2017
Yaodong Yu
Difan Zou
Quanquan Gu
ArXivPDFHTML

Papers citing "Saving Gradient and Negative Curvature Computations: Finding Local Minima More Efficiently"

3 / 3 papers shown
Title
Sub-sampled Cubic Regularization for Non-convex Optimization
Sub-sampled Cubic Regularization for Non-convex Optimization
Jonas Köhler
Aurelien Lucchi
31
165
0
16 May 2017
Non-square matrix sensing without spurious local minima via the
  Burer-Monteiro approach
Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach
Dohyung Park
Anastasios Kyrillidis
Constantine Caramanis
Sujay Sanghavi
37
180
0
12 Sep 2016
Matrix Completion has No Spurious Local Minimum
Matrix Completion has No Spurious Local Minimum
Rong Ge
Jason D. Lee
Tengyu Ma
44
597
0
24 May 2016
1