ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.02679
  4. Cited By
AdaComp : Adaptive Residual Gradient Compression for Data-Parallel
  Distributed Training

AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training

7 December 2017
Chia-Yu Chen
Jungwook Choi
D. Brand
A. Agrawal
Wei Zhang
K. Gopalakrishnan
    ODL
ArXiv (abs)PDFHTML

Papers citing "AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training"

14 / 64 papers shown
Title
Associative Convolutional Layers
Associative Convolutional Layers
H. Omidvar
Vahideh Akhlaghi
M. Franceschetti
Rajesh K. Gupta
44
1
0
10 Jun 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass
  Error-Compensated Compression
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
91
219
0
15 May 2019
Priority-based Parameter Propagation for Distributed DNN Training
Priority-based Parameter Propagation for Distributed DNN Training
Anand Jayarajan
Jinliang Wei
Garth A. Gibson
Alexandra Fedorova
Gennady Pekhimenko
AI4CE
62
182
0
10 May 2019
Realizing Petabyte Scale Acoustic Modeling
Realizing Petabyte Scale Acoustic Modeling
S. Parthasarathi
Nitin Sivakrishnan
Pranav Ladkat
N. Strom
60
11
0
24 Apr 2019
Distributed Deep Learning Strategies For Automatic Speech Recognition
Distributed Deep Learning Strategies For Automatic Speech Recognition
Wei Zhang
Xiaodong Cui
Ulrich Finkler
Brian Kingsbury
G. Saon
David S. Kung
M. Picheny
70
29
0
10 Apr 2019
A Distributed Synchronous SGD Algorithm with Global Top-$k$
  Sparsification for Low Bandwidth Networks
A Distributed Synchronous SGD Algorithm with Global Top-kkk Sparsification for Low Bandwidth Networks
Shaoshuai Shi
Qiang-qiang Wang
Kaiyong Zhao
Zhenheng Tang
Yuxin Wang
Xiang Huang
Xiaowen Chu
79
137
0
14 Jan 2019
Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep
  Net Training
Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training
Youjie Li
Hang Qiu
Songze Li
A. Avestimehr
Nam Sung Kim
Alex Schwing
FedML
118
104
0
08 Nov 2018
A Hitchhiker's Guide On Distributed Training of Deep Neural Networks
A Hitchhiker's Guide On Distributed Training of Deep Neural Networks
K. Chahal
Manraj Singh Grover
Kuntal Dey
3DHOOD
88
54
0
28 Oct 2018
Computation Scheduling for Distributed Machine Learning with Straggling
  Workers
Computation Scheduling for Distributed Machine Learning with Straggling Workers
Mohammad Mohammadi Amiri
Deniz Gunduz
FedML
82
3
0
23 Oct 2018
Sparsified SGD with Memory
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
106
753
0
20 Sep 2018
RedSync : Reducing Synchronization Traffic for Distributed Deep Learning
RedSync : Reducing Synchronization Traffic for Distributed Deep Learning
Jiarui Fang
Haohuan Fu
Guangwen Yang
Cho-Jui Hsieh
GNN
106
25
0
13 Aug 2018
ATOMO: Communication-efficient Learning via Atomic Sparsification
ATOMO: Communication-efficient Learning via Atomic Sparsification
Hongyi Wang
Scott Sievert
Zachary B. Charles
Shengchao Liu
S. Wright
Dimitris Papailiopoulos
95
356
0
11 Jun 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth
  Concurrency Analysis
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
82
711
0
26 Feb 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for
  Distributed Training
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
191
1,413
0
05 Dec 2017
Previous
12