Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.02679
Cited By
AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training
7 December 2017
Chia-Yu Chen
Jungwook Choi
D. Brand
A. Agrawal
Wei Zhang
K. Gopalakrishnan
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training"
50 / 64 papers shown
Title
Novel Gradient Sparsification Algorithm via Bayesian Inference
Ali Bereyhi
B. Liang
G. Boudreau
Ali Afana
61
2
0
23 Sep 2024
I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey
Noah Lewis
J. L. Bez
Suren Byna
109
0
0
16 Apr 2024
Smart-Infinity: Fast Large Language Model Training using Near-Storage Processing on a Real System
Hongsun Jang
Jaeyong Song
Jaewon Jung
Jaeyoung Park
Youngsok Kim
Jinho Lee
41
16
0
11 Mar 2024
Preserving Near-Optimal Gradient Sparsification Cost for Scalable Distributed Deep Learning
Daegun Yoon
Sangyoon Oh
69
0
0
21 Feb 2024
Communication-Efficient Distributed Learning with Local Immediate Error Compensation
Yifei Cheng
Li Shen
Linli Xu
Xun Qian
Shiwei Wu
Yiming Zhou
Tie Zhang
Dacheng Tao
Enhong Chen
65
0
0
19 Feb 2024
Temporal Knowledge Distillation for Time-Sensitive Financial Services Applications
Hongda Shen
Eren Kurshan
AAML
49
2
0
28 Dec 2023
FedSZ: Leveraging Error-Bounded Lossy Compression for Federated Learning Communications
Grant Wilkins
Sheng Di
Jon C. Calhoun
Zilinghan Li
Kibaek Kim
Robert Underwood
Richard Mortier
Franck Cappello
FedML
78
4
0
20 Dec 2023
Near-Linear Scaling Data Parallel Training with Overlapping-Aware Gradient Compression
Lin Meng
Yuzhong Sun
Weimin Li
77
1
0
08 Nov 2023
MiCRO: Near-Zero Cost Gradient Sparsification for Scaling and Accelerating Distributed DNN Training
Daegun Yoon
Sangyoon Oh
64
1
0
02 Oct 2023
DEFT: Exploiting Gradient Norm Difference between Model Layers for Scalable Gradient Sparsification
Daegun Yoon
Sangyoon Oh
71
1
0
07 Jul 2023
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
67
28
0
24 Jan 2023
L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and Accurate Deep Learning
Mohammadreza Alimohammadi
I. Markov
Elias Frantar
Dan Alistarh
73
5
0
31 Oct 2022
Approximate Computing and the Efficient Machine Learning Expedition
J. Henkel
Hai Helen Li
A. Raghunathan
M. Tahoori
Swagath Venkataramani
Xiaoxuan Yang
Georgios Zervakis
49
17
0
02 Oct 2022
Empirical Analysis on Top-k Gradient Sparsification for Distributed Deep Learning in a Supercomputing Environment
Daegun Yoon
Sangyoon Oh
80
0
0
18 Sep 2022
Reconciling Security and Communication Efficiency in Federated Learning
Karthik Prasad
Sayan Ghosh
Graham Cormode
Ilya Mironov
Ashkan Yousefpour
Pierre Stock
FedML
69
9
0
26 Jul 2022
sqSGD: Locally Private and Communication Efficient Federated Learning
Yan Feng
Tao Xiong
Ruofan Wu
Lingjuan Lv
Leilei Shi
FedML
70
2
0
21 Jun 2022
Rate-Distortion Theoretic Bounds on Generalization Error for Distributed Learning
Romain Chor
Abdellatif Zaidi
Milad Sefidgaran
FedML
81
15
0
06 Jun 2022
ByteComp: Revisiting Gradient Compression in Distributed Training
Zhuang Wang
Yanghua Peng
Yibo Zhu
T. Ng
59
2
0
28 May 2022
Efficient Direct-Connect Topologies for Collective Communications
Liangyu Zhao
Siddharth Pal
Tapan Chugh
Weiyang Wang
Jason Fantl
P. Basu
J. Khoury
Arvind Krishnamurthy
86
7
0
07 Feb 2022
TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs
Weiyang Wang
Moein Khazraee
Zhizhen Zhong
M. Ghobadi
Zhihao Jia
Dheevatsa Mudigere
Ying Zhang
A. Kewitsch
123
93
0
01 Feb 2022
ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction
Keshav Santhanam
Omar Khattab
Jon Saad-Falcon
Christopher Potts
Matei A. Zaharia
128
417
0
02 Dec 2021
Doing More by Doing Less: How Structured Partial Backpropagation Improves Deep Learning Clusters
Adarsh Kumar
Kausik Subramanian
Shivaram Venkataraman
Aditya Akella
30
5
0
20 Nov 2021
CGX: Adaptive System Support for Communication-Efficient Deep Learning
I. Markov
Hamidreza Ramezanikebrya
Dan Alistarh
GNN
82
5
0
16 Nov 2021
Resource-Efficient Federated Learning
A. Abdelmoniem
Atal Narayan Sahu
Marco Canini
Suhaib A. Fahmy
FedML
91
57
0
01 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
83
15
0
01 Nov 2021
Revealing and Protecting Labels in Distributed Training
Trung D. Q. Dang
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Peter Chin
Franccoise Beaufays
38
26
0
31 Oct 2021
A Distributed SGD Algorithm with Global Sketching for Deep Learning Training Acceleration
Lingfei Dai
Boyu Diao
Chao Li
Yongjun Xu
63
5
0
13 Aug 2021
CD-SGD: Distributed Stochastic Gradient Descent with Compression and Delay Compensation
Enda Yu
Dezun Dong
Yemao Xu
Shuo Ouyang
Xiangke Liao
47
5
0
21 Jun 2021
ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient Distributed Training
Chia-Yu Chen
Jiamin Ni
Songtao Lu
Xiaodong Cui
Pin-Yu Chen
...
Naigang Wang
Swagath Venkataramani
Vijayalakshmi Srinivasan
Wei Zhang
K. Gopalakrishnan
79
67
0
21 Apr 2021
MergeComp: A Compression Scheduler for Scalable Communication-Efficient Distributed Training
Zhuang Wang
X. Wu
T. Ng
GNN
24
4
0
28 Mar 2021
Pufferfish: Communication-efficient Models At No Extra Cost
Hongyi Wang
Saurabh Agarwal
Dimitris Papailiopoulos
85
59
0
05 Mar 2021
On the Impact of Device and Behavioral Heterogeneity in Federated Learning
A. Abdelmoniem
Chen-Yu Ho
Pantelis Papageorgiou
Muhammad Bilal
Marco Canini
FedML
59
18
0
15 Feb 2021
An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems
A. Abdelmoniem
Ahmed Elzanaty
Mohamed-Slim Alouini
Marco Canini
123
77
0
26 Jan 2021
DynaComm: Accelerating Distributed CNN Training between Edges and Clouds through Dynamic Communication Scheduling
Shangming Cai
Dongsheng Wang
Haixia Wang
Yongqiang Lyu
Guangquan Xu
Xi Zheng
A. Vasilakos
59
6
0
20 Jan 2021
Accordion: Adaptive Gradient Communication via Critical Learning Regime Identification
Saurabh Agarwal
Hongyi Wang
Kangwook Lee
Shivaram Venkataraman
Dimitris Papailiopoulos
85
25
0
29 Oct 2020
Fairness-aware Agnostic Federated Learning
Wei Du
Depeng Xu
Xintao Wu
Hanghang Tong
FedML
90
131
0
10 Oct 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
213
168
0
03 Jul 2020
Is Network the Bottleneck of Distributed Training?
Zhen Zhang
Chaokun Chang
Yanghua Peng
Yida Wang
R. Arora
Xin Jin
89
71
0
17 Jun 2020
Characterizing Impacts of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data
Chengxu Yang
Qipeng Wang
Mengwei Xu
Shangguang Wang
Kaigui Bian
Yunxin Liu
Xuanzhe Liu
100
23
0
12 Jun 2020
Communication-Efficient Distributed Deep Learning: A Comprehensive Survey
Zhenheng Tang
Shaoshuai Shi
Wei Wang
Yue Liu
Xiaowen Chu
80
49
0
10 Mar 2020
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
116
12
0
06 Mar 2020
Communication-Efficient Decentralized Learning with Sparsification and Adaptive Peer Selection
Zhenheng Tang
Shaoshuai Shi
Xiaowen Chu
FedML
62
58
0
22 Feb 2020
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
99
334
0
22 Feb 2020
Intermittent Pulling with Local Compensation for Communication-Efficient Federated Learning
Yining Qi
Zhihao Qu
Song Guo
Xin Gao
Ruixuan Li
Baoliu Ye
FedML
38
9
0
22 Jan 2020
Adaptive Gradient Sparsification for Efficient Federated Learning: An Online Learning Approach
Pengchao Han
Shiqiang Wang
K. Leung
FedML
78
182
0
14 Jan 2020
Understanding Top-k Sparsification in Distributed Deep Learning
Shaoshuai Shi
Xiaowen Chu
Ka Chun Cheung
Simon See
233
101
0
20 Nov 2019
Layer-wise Adaptive Gradient Sparsification for Distributed Deep Learning with Convergence Guarantees
Shaoshuai Shi
Zhenheng Tang
Qiang-qiang Wang
Kaiyong Zhao
Xiaowen Chu
65
22
0
20 Nov 2019
On the Discrepancy between the Theoretical Analysis and Practical Implementations of Compressed Communication for Distributed Deep Learning
Aritra Dutta
El Houcine Bergou
A. Abdelmoniem
Chen-Yu Ho
Atal Narayan Sahu
Marco Canini
Panos Kalnis
77
78
0
19 Nov 2019
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning
XINYAN DAI
Xiao Yan
Kaiwen Zhou
Han Yang
K. K. Ng
James Cheng
Yu Fan
FedML
68
47
0
12 Nov 2019
Gradient Sparification for Asynchronous Distributed Training
Zijie Yan
FedML
21
1
0
24 Oct 2019
1
2
Next