Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.10907
Cited By
Deep Reinforcement Learning for De-Novo Drug Design
29 November 2017
Mariya Popova
Olexandr Isayev
Alexander Tropsha
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Reinforcement Learning for De-Novo Drug Design"
50 / 200 papers shown
Title
Inverse Design of Potential Singlet Fission Molecules using a Transfer Learning Based Approach
Akshay Subramanian
Utkarsh Saha
Tejasvini Sharma
N. Tailor
S. Satapathi
14
1
0
17 Mar 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
21
82
0
18 Feb 2020
Improving Molecular Design by Stochastic Iterative Target Augmentation
Kevin Kaichuang Yang
Wengong Jin
Kyle Swanson
Regina Barzilay
Tommi Jaakkola
30
26
0
11 Feb 2020
Exploring Chemical Space using Natural Language Processing Methodologies for Drug Discovery
Hakime Öztürk
Arzucan Özgür
P. Schwaller
Teodoro Laino
Elif Özkirimli
27
116
0
10 Feb 2020
Multi-Objective Molecule Generation using Interpretable Substructures
Wengong Jin
Regina Barzilay
Tommi Jaakkola
19
23
0
08 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
Kevin Maik Jablonka
D. Ongari
S. M. Moosavi
B. Smit
AI4CE
31
350
0
18 Jan 2020
Black Box Recursive Translations for Molecular Optimization
Farhan N. Damani
Vishnu Sresht
Stephen Ra
22
5
0
21 Dec 2019
A Deep Reinforcement Learning Architecture for Multi-stage Optimal Control
Yuguang Yang
9
1
0
25 Nov 2019
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
Tianfan Fu
Cao Xiao
Jimeng Sun
31
63
0
23 Nov 2019
Molecular Generative Model Based On Adversarially Regularized Autoencoder
S. Hong
Jaechang Lim
Seongok Ryu
W. Kim
GAN
DRL
GNN
31
63
0
13 Nov 2019
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
12
642
0
07 Nov 2019
Multiple-objective Reinforcement Learning for Inverse Design and Identification
Haoran Wei
Mariefel V. Olarte
Garrett B. Goh
AI4CE
16
3
0
09 Oct 2019
Generating valid Euclidean distance matrices
Moritz Hoffmann
Frank Noé
21
56
0
07 Oct 2019
Learning Everywhere: A Taxonomy for the Integration of Machine Learning and Simulations
Geoffrey C. Fox
S. Jha
AI4CE
24
13
0
29 Sep 2019
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
GEN: Highly Efficient SMILES Explorer Using Autodidactic Generative Examination Networks
R. V. Deursen
P. Ertl
Igor V. Tetko
Guillaume Godin
11
32
0
10 Sep 2019
Regression-clustering for Improved Accuracy and Training Cost with Molecular-Orbital-Based Machine Learning
Lixue Cheng
Nikola B. Kovachki
Matthew Welborn
Thomas F. Miller
20
44
0
04 Sep 2019
PaccMann
R
L
^{RL}
R
L
: Designing anticancer drugs from transcriptomic data via reinforcement learning
Jannis Born
Matteo Manica
Ali Oskooei
Joris Cadow
Karsten Borgwardt
María Rodríguez Martínez
27
0
0
29 Aug 2019
Reinforcement Learning in Healthcare: A Survey
Chao Yu
Jiming Liu
S. Nemati
LM&MA
OffRL
19
549
0
22 Aug 2019
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
W. Neiswanger
Barnabás Póczós
J. Schneider
Eric P. Xing
31
121
0
05 Aug 2019
Generative Models for Automatic Chemical Design
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
MedIm
AI4CE
32
81
0
02 Jul 2019
Efficient Navigation of Colloidal Robots in an Unknown Environment via Deep Reinforcement Learning
Yuguang Yang
M. Bevan
Bo Li
6
0
0
26 Jun 2019
Deep Reinforcement Learning for Cyber Security
Thanh Thi Nguyen
Vijay Janapa Reddi
OffRL
AI4CE
10
313
0
13 Jun 2019
Hierarchical Graph-to-Graph Translation for Molecules
Wengong Jin
Regina Barzilay
Tommi Jaakkola
26
16
0
11 Jun 2019
Probabilistic hypergraph grammars for efficient molecular optimization
E. Kraev
Mark Harley
16
1
0
05 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
35
201
0
02 Jun 2019
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
Mario Krenn
Florian Hase
AkshatKumar Nigam
Pascal Friederich
Alán Aspuru-Guzik
11
70
0
31 May 2019
Scaffold-based molecular design using graph generative model
Jaechang Lim
Sang-Yeon Hwang
Seungsu Kim
Seokhyun Moon
Woo Youn Kim
25
17
0
31 May 2019
MolecularRNN: Generating realistic molecular graphs with optimized properties
Mariya Popova
Mykhailo Shvets
Junier Oliva
Olexandr Isayev
GNN
35
164
0
31 May 2019
All SMILES Variational Autoencoder
Zaccary Alperstein
Artem Cherkasov
J. Rolfe
DRL
14
38
0
30 May 2019
Adversarial Learned Molecular Graph Inference and Generation
Sebastian Polsterl
Christian Wachinger
GAN
28
7
0
24 May 2019
Towards Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-based Convolutional Encoders
Matteo Manica
Ali Oskooei
Jannis Born
Vigneshwar Subramanian
J. Sáez-Rodríguez
María Rodríguez Martínez
22
115
0
25 Apr 2019
Optimizing thermodynamic trajectories using evolutionary and gradient-based reinforcement learning
Chris Beeler
U. Yahorau
Rory Coles
Kyle Mills
S. Whitelam
Isaac Tamblyn
6
7
0
20 Mar 2019
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE
3DV
24
326
0
11 Mar 2019
Deep learning in bioinformatics: introduction, application, and perspective in big data era
Yu Li
Chao Huang
Lizhong Ding
Zhongxiao Li
Yijie Pan
Xin Gao
AI4CE
21
295
0
28 Feb 2019
Atomistic structure learning
M. Jørgensen
H. L. Mortensen
S. A. Meldgaard
E. L. Kolsbjerg
Thomas L. Jacobsen
K. H. Sørensen
B. Hammer
AI4CE
13
36
0
27 Feb 2019
Mol-CycleGAN - a generative model for molecular optimization
Łukasz Maziarka
Agnieszka Pocha
Jan Kaczmarczyk
Krzysztof Rataj
M. Warchoł
20
241
0
06 Feb 2019
A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules
Lixue Cheng
Matthew Welborn
Anders S. Christensen
Thomas F. Miller
22
93
0
10 Jan 2019
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
197
633
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
691
0
22 Nov 2018
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical Reaction Prediction
P. Schwaller
Teodoro Laino
John McGuinness
A. Horváth
Constantine Bekas
A. Lee
25
719
0
06 Nov 2018
Generating equilibrium molecules with deep neural networks
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
BDL
17
38
0
26 Oct 2018
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
21
532
0
19 Oct 2018
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
28
144
0
15 Oct 2018
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
172
183
0
30 Apr 2018
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery
Kristina Preuer
Philipp Renz
Thomas Unterthiner
Sepp Hochreiter
G. Klambauer
MedIm
26
324
0
26 Mar 2018
Multi-Objective De Novo Drug Design with Conditional Graph Generative Model
Yibo Li
L. Zhang
Zhenming Liu
35
335
0
18 Jan 2018
In silico generation of novel, drug-like chemical matter using the LSTM neural network
P. Ertl
Richard A. Lewis
E. Martin
V. Polyakov
17
59
0
20 Dec 2017
Previous
1
2
3
4