ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.10907
  4. Cited By
Deep Reinforcement Learning for De-Novo Drug Design

Deep Reinforcement Learning for De-Novo Drug Design

29 November 2017
Mariya Popova
Olexandr Isayev
Alexander Tropsha
ArXivPDFHTML

Papers citing "Deep Reinforcement Learning for De-Novo Drug Design"

50 / 200 papers shown
Title
Inverse Design of Potential Singlet Fission Molecules using a Transfer
  Learning Based Approach
Inverse Design of Potential Singlet Fission Molecules using a Transfer Learning Based Approach
Akshay Subramanian
Utkarsh Saha
Tejasvini Sharma
N. Tailor
S. Satapathi
14
1
0
17 Mar 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
21
82
0
18 Feb 2020
Improving Molecular Design by Stochastic Iterative Target Augmentation
Improving Molecular Design by Stochastic Iterative Target Augmentation
Kevin Kaichuang Yang
Wengong Jin
Kyle Swanson
Regina Barzilay
Tommi Jaakkola
30
26
0
11 Feb 2020
Exploring Chemical Space using Natural Language Processing Methodologies
  for Drug Discovery
Exploring Chemical Space using Natural Language Processing Methodologies for Drug Discovery
Hakime Öztürk
Arzucan Özgür
P. Schwaller
Teodoro Laino
Elif Özkirimli
27
116
0
10 Feb 2020
Multi-Objective Molecule Generation using Interpretable Substructures
Multi-Objective Molecule Generation using Interpretable Substructures
Wengong Jin
Regina Barzilay
Tommi Jaakkola
19
23
0
08 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
Big-Data Science in Porous Materials: Materials Genomics and Machine
  Learning
Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
Kevin Maik Jablonka
D. Ongari
S. M. Moosavi
B. Smit
AI4CE
31
350
0
18 Jan 2020
Black Box Recursive Translations for Molecular Optimization
Black Box Recursive Translations for Molecular Optimization
Farhan N. Damani
Vishnu Sresht
Stephen Ra
22
5
0
21 Dec 2019
A Deep Reinforcement Learning Architecture for Multi-stage Optimal
  Control
A Deep Reinforcement Learning Architecture for Multi-stage Optimal Control
Yuguang Yang
9
1
0
25 Nov 2019
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
Tianfan Fu
Cao Xiao
Jimeng Sun
31
63
0
23 Nov 2019
Molecular Generative Model Based On Adversarially Regularized
  Autoencoder
Molecular Generative Model Based On Adversarially Regularized Autoencoder
S. Hong
Jaechang Lim
Seongok Ryu
W. Kim
GAN
DRL
GNN
31
63
0
13 Nov 2019
Machine learning for molecular simulation
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
12
642
0
07 Nov 2019
Multiple-objective Reinforcement Learning for Inverse Design and
  Identification
Multiple-objective Reinforcement Learning for Inverse Design and Identification
Haoran Wei
Mariefel V. Olarte
Garrett B. Goh
AI4CE
16
3
0
09 Oct 2019
Generating valid Euclidean distance matrices
Generating valid Euclidean distance matrices
Moritz Hoffmann
Frank Noé
21
56
0
07 Oct 2019
Learning Everywhere: A Taxonomy for the Integration of Machine Learning
  and Simulations
Learning Everywhere: A Taxonomy for the Integration of Machine Learning and Simulations
Geoffrey C. Fox
S. Jha
AI4CE
24
13
0
29 Sep 2019
Synthetic Data for Deep Learning
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
GEN: Highly Efficient SMILES Explorer Using Autodidactic Generative
  Examination Networks
GEN: Highly Efficient SMILES Explorer Using Autodidactic Generative Examination Networks
R. V. Deursen
P. Ertl
Igor V. Tetko
Guillaume Godin
11
32
0
10 Sep 2019
Regression-clustering for Improved Accuracy and Training Cost with
  Molecular-Orbital-Based Machine Learning
Regression-clustering for Improved Accuracy and Training Cost with Molecular-Orbital-Based Machine Learning
Lixue Cheng
Nikola B. Kovachki
Matthew Welborn
Thomas F. Miller
20
44
0
04 Sep 2019
PaccMann$^{RL}$: Designing anticancer drugs from transcriptomic data via
  reinforcement learning
PaccMannRL^{RL}RL: Designing anticancer drugs from transcriptomic data via reinforcement learning
Jannis Born
Matteo Manica
Ali Oskooei
Joris Cadow
Karsten Borgwardt
María Rodríguez Martínez
27
0
0
29 Aug 2019
Reinforcement Learning in Healthcare: A Survey
Reinforcement Learning in Healthcare: A Survey
Chao Yu
Jiming Liu
S. Nemati
LM&MA
OffRL
19
549
0
22 Aug 2019
ChemBO: Bayesian Optimization of Small Organic Molecules with
  Synthesizable Recommendations
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
W. Neiswanger
Barnabás Póczós
J. Schneider
Eric P. Xing
31
121
0
05 Aug 2019
Generative Models for Automatic Chemical Design
Generative Models for Automatic Chemical Design
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
MedIm
AI4CE
32
81
0
02 Jul 2019
Efficient Navigation of Colloidal Robots in an Unknown Environment via
  Deep Reinforcement Learning
Efficient Navigation of Colloidal Robots in an Unknown Environment via Deep Reinforcement Learning
Yuguang Yang
M. Bevan
Bo Li
6
0
0
26 Jun 2019
Deep Reinforcement Learning for Cyber Security
Deep Reinforcement Learning for Cyber Security
Thanh Thi Nguyen
Vijay Janapa Reddi
OffRL
AI4CE
10
313
0
13 Jun 2019
Hierarchical Graph-to-Graph Translation for Molecules
Hierarchical Graph-to-Graph Translation for Molecules
Wengong Jin
Regina Barzilay
Tommi Jaakkola
26
16
0
11 Jun 2019
Probabilistic hypergraph grammars for efficient molecular optimization
Probabilistic hypergraph grammars for efficient molecular optimization
E. Kraev
Mark Harley
16
1
0
05 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
35
201
0
02 Jun 2019
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular
  string representation
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
Mario Krenn
Florian Hase
AkshatKumar Nigam
Pascal Friederich
Alán Aspuru-Guzik
11
70
0
31 May 2019
Scaffold-based molecular design using graph generative model
Scaffold-based molecular design using graph generative model
Jaechang Lim
Sang-Yeon Hwang
Seungsu Kim
Seokhyun Moon
Woo Youn Kim
25
17
0
31 May 2019
MolecularRNN: Generating realistic molecular graphs with optimized
  properties
MolecularRNN: Generating realistic molecular graphs with optimized properties
Mariya Popova
Mykhailo Shvets
Junier Oliva
Olexandr Isayev
GNN
35
164
0
31 May 2019
All SMILES Variational Autoencoder
All SMILES Variational Autoencoder
Zaccary Alperstein
Artem Cherkasov
J. Rolfe
DRL
14
38
0
30 May 2019
Adversarial Learned Molecular Graph Inference and Generation
Adversarial Learned Molecular Graph Inference and Generation
Sebastian Polsterl
Christian Wachinger
GAN
28
7
0
24 May 2019
Towards Explainable Anticancer Compound Sensitivity Prediction via
  Multimodal Attention-based Convolutional Encoders
Towards Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-based Convolutional Encoders
Matteo Manica
Ali Oskooei
Jannis Born
Vigneshwar Subramanian
J. Sáez-Rodríguez
María Rodríguez Martínez
22
115
0
25 Apr 2019
Optimizing thermodynamic trajectories using evolutionary and
  gradient-based reinforcement learning
Optimizing thermodynamic trajectories using evolutionary and gradient-based reinforcement learning
Chris Beeler
U. Yahorau
Rory Coles
Kyle Mills
S. Whitelam
Isaac Tamblyn
6
7
0
20 Mar 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE
3DV
24
326
0
11 Mar 2019
Deep learning in bioinformatics: introduction, application, and
  perspective in big data era
Deep learning in bioinformatics: introduction, application, and perspective in big data era
Yu Li
Chao Huang
Lizhong Ding
Zhongxiao Li
Yijie Pan
Xin Gao
AI4CE
21
295
0
28 Feb 2019
Atomistic structure learning
Atomistic structure learning
M. Jørgensen
H. L. Mortensen
S. A. Meldgaard
E. L. Kolsbjerg
Thomas L. Jacobsen
K. H. Sørensen
B. Hammer
AI4CE
13
36
0
27 Feb 2019
Mol-CycleGAN - a generative model for molecular optimization
Mol-CycleGAN - a generative model for molecular optimization
Łukasz Maziarka
Agnieszka Pocha
Jan Kaczmarczyk
Krzysztof Rataj
M. Warchoł
20
241
0
06 Feb 2019
A Universal Density Matrix Functional from Molecular Orbital-Based
  Machine Learning: Transferability across Organic Molecules
A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules
Lixue Cheng
Matthew Welborn
Anders S. Christensen
Thomas F. Miller
22
93
0
10 Jan 2019
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
197
633
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
691
0
22 Nov 2018
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical
  Reaction Prediction
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical Reaction Prediction
P. Schwaller
Teodoro Laino
John McGuinness
A. Horváth
Constantine Bekas
A. Lee
25
719
0
06 Nov 2018
Generating equilibrium molecules with deep neural networks
Generating equilibrium molecules with deep neural networks
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
BDL
17
38
0
26 Oct 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
21
532
0
19 Oct 2018
Deep Reinforcement Learning
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
28
144
0
15 Oct 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
172
183
0
30 Apr 2018
Fréchet ChemNet Distance: A metric for generative models for molecules
  in drug discovery
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery
Kristina Preuer
Philipp Renz
Thomas Unterthiner
Sepp Hochreiter
G. Klambauer
MedIm
26
324
0
26 Mar 2018
Multi-Objective De Novo Drug Design with Conditional Graph Generative
  Model
Multi-Objective De Novo Drug Design with Conditional Graph Generative Model
Yibo Li
L. Zhang
Zhenming Liu
35
335
0
18 Jan 2018
In silico generation of novel, drug-like chemical matter using the LSTM
  neural network
In silico generation of novel, drug-like chemical matter using the LSTM neural network
P. Ertl
Richard A. Lewis
E. Martin
V. Polyakov
17
59
0
20 Dec 2017
Previous
1234