ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.09726
  4. Cited By
Exploiting the potential of unlabeled endoscopic video data with
  self-supervised learning

Exploiting the potential of unlabeled endoscopic video data with self-supervised learning

27 November 2017
T. Ross
David Zimmerer
A. Vemuri
Fabian Isensee
Manuel Wiesenfarth
S. Bodenstedt
Fabian Both
Philip Kessler
M. Wagner
Beat Müller
H. Kenngott
Stefanie Speidel
Annette Kopp-Schneider
Klaus Maier-Hein
Lena Maier-Hein
    MedIm
    SSL
ArXivPDFHTML

Papers citing "Exploiting the potential of unlabeled endoscopic video data with self-supervised learning"

24 / 24 papers shown
Title
Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Kun Yuan
V. Srivastav
Tong Yu
Joël L. Lavanchy
Pietro Mascagni
Pietro Mascagni
N. Padoy
Nicolas Padoy
63
22
0
27 Jul 2023
Real-Time Segmentation of Non-Rigid Surgical Tools based on Deep
  Learning and Tracking
Real-Time Segmentation of Non-Rigid Surgical Tools based on Deep Learning and Tracking
Luis C. Garcia-Peraza-Herrera
Wenqi Li
Caspar Gruijthuijsen
A. Devreker
G. Attilakos
Jan Deprest
E. V. Poorten
Danail Stoyanov
Tom Vercauteren
Sébastien Ourselin
25
105
0
07 Sep 2020
ToolNet: Holistically-Nested Real-Time Segmentation of Robotic Surgical
  Tools
ToolNet: Holistically-Nested Real-Time Segmentation of Robotic Surgical Tools
Luis C. Garcia-Peraza-Herrera
Wenqi Li
Lucas Fidon
Caspar Gruijthuijsen
A. Devreker
...
Jan Deprest
E. V. Poorten
Danail Stoyanov
Tom Vercauteren
Sebastien Ourselin
43
128
0
25 Jun 2017
Convolutional Neural Networks for Medical Image Analysis: Full Training
  or Fine Tuning?
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
Nima Tajbakhsh
Jae Y. Shin
S. Gurudu
R. T. Hurst
Christopher B. Kendall
Michael B. Gotway
Jianming Liang
153
2,508
0
02 Jun 2017
Understanding the Mechanisms of Deep Transfer Learning for Medical
  Images
Understanding the Mechanisms of Deep Transfer Learning for Medical Images
Hariharan Ravishankar
Prasad Sudhakar
Rahul Venkataramani
S. Thiruvenkadam
Pavan Annangi
N.Hari Babu
V. Vaidya
MedIm
48
182
0
20 Apr 2017
Deep Residual Learning for Instrument Segmentation in Robotic Surgery
Deep Residual Learning for Instrument Segmentation in Robotic Surgery
D. Pakhomov
Vittal Premachandran
M. Allan
M. Azizian
Nassir Navab
MedIm
29
118
0
24 Mar 2017
Semi-Supervised Deep Learning for Fully Convolutional Networks
Semi-Supervised Deep Learning for Fully Convolutional Networks
Christoph Baur
Shadi Albarqouni
Nassir Navab
SSL
38
124
0
17 Mar 2017
Colorization as a Proxy Task for Visual Understanding
Colorization as a Proxy Task for Visual Understanding
Gustav Larsson
Michael Maire
Gregory Shakhnarovich
SSL
135
494
0
11 Mar 2017
Unsupervised temporal context learning using convolutional neural
  networks for laparoscopic workflow analysis
Unsupervised temporal context learning using convolutional neural networks for laparoscopic workflow analysis
S. Bodenstedt
M. Wagner
Darko Katic
P. Mietkowski
Benjamin F. B. Mayer
H. Kenngott
Beat Müller-Stich
Rüdiger Dillmann
Stefanie Speidel
40
37
0
13 Feb 2017
Unsupervised domain adaptation in brain lesion segmentation with
  adversarial networks
Unsupervised domain adaptation in brain lesion segmentation with adversarial networks
Konstantinos Kamnitsas
Christian F. Baumgartner
C. Ledig
Virginia Newcombe
Joanna P. Simpson
...
David Menon
A. Nori
A. Criminisi
Daniel Rueckert
Ben Glocker
OOD
MedIm
64
478
0
28 Dec 2016
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel
  Prediction
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
SSL
DRL
51
667
0
29 Nov 2016
Clickstream analysis for crowd-based object segmentation with confidence
Clickstream analysis for crowd-based object segmentation with confidence
Eric Heim
A. Seitel
Jonas Andrulis
Fabian Isensee
C. Stock
T. Ross
Lena Maier-Hein
18
10
0
25 Nov 2016
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
289
19,560
0
21 Nov 2016
Least Squares Generative Adversarial Networks
Least Squares Generative Adversarial Networks
Xudong Mao
Qing Li
Haoran Xie
Raymond Y. K. Lau
Zhen Wang
Stephen Paul Smolley
GAN
258
4,554
0
13 Nov 2016
Amortised MAP Inference for Image Super-resolution
Amortised MAP Inference for Image Super-resolution
C. Sønderby
Jose Caballero
Lucas Theis
Wenzhe Shi
Ferenc Huszár
70
435
0
14 Oct 2016
Context Encoders: Feature Learning by Inpainting
Context Encoders: Feature Learning by Inpainting
Deepak Pathak
Philipp Krahenbuhl
Jeff Donahue
Trevor Darrell
Alexei A. Efros
SSL
48
5,277
0
25 Apr 2016
Unsupervised Learning of Visual Representations by Solving Jigsaw
  Puzzles
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
M. Noroozi
Paolo Favaro
SSL
135
2,973
0
30 Mar 2016
Colorful Image Colorization
Colorful Image Colorization
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
112
3,527
0
28 Mar 2016
EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic
  Videos
EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos
A. P. Twinanda
S. Shehata
Didier Mutter
J. Marescaux
M. de Mathelin
N. Padoy
207
858
0
09 Feb 2016
Autoencoding beyond pixels using a learned similarity metric
Autoencoding beyond pixels using a learned similarity metric
Anders Boesen Lindbo Larsen
Søren Kaae Sønderby
Hugo Larochelle
Ole Winther
GAN
134
2,061
0
31 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.2K
76,547
0
18 May 2015
Learning to See by Moving
Learning to See by Moving
Pulkit Agrawal
João Carreira
Jitendra Malik
SSL
65
553
0
07 May 2015
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
272
43,290
0
01 May 2014
1