ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.08576
  4. Cited By
Variational Encoding of Complex Dynamics

Variational Encoding of Complex Dynamics

23 November 2017
Carlos X. Hernández
H. Wayment-Steele
Mohammad M. Sultan
B. Husic
Vijay S. Pande
    AI4CE
ArXivPDFHTML

Papers citing "Variational Encoding of Complex Dynamics"

17 / 17 papers shown
Title
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
60
8
0
10 Jun 2022
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
159
49
0
27 Feb 2020
Note: Variational Encoding of Protein Dynamics Benefits from Maximizing
  Latent Autocorrelation
Note: Variational Encoding of Protein Dynamics Benefits from Maximizing Latent Autocorrelation
H. Wayment-Steele
Vijay S. Pande
DRL
31
6
0
17 Mar 2018
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
148
360
0
30 Oct 2017
Dimensionality reduction methods for molecular simulations
Dimensionality reduction methods for molecular simulations
Stefan Doerr
Igor Ariz
M. Harvey
Gianni De Fabritiis
43
19
0
29 Oct 2017
VAMPnets: Deep learning of molecular kinetics
VAMPnets: Deep learning of molecular kinetics
Andreas Mardt
Luca Pasquali
Hao Wu
Frank Noé
60
545
0
16 Oct 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
67
283
0
16 Oct 2017
Disentangling Space and Time in Video with Hierarchical Variational
  Auto-encoders
Disentangling Space and Time in Video with Hierarchical Variational Auto-encoders
Will Grathwohl
Aaron Wilson
DRL
49
21
0
14 Dec 2016
Variational Koopman models: slow collective variables and molecular
  kinetics from short off-equilibrium simulations
Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations
Hao Wu
Feliks Nuske
Fabian Paul
Stefan Klus
P. Koltai
Frank Noé
127
128
0
20 Oct 2016
An Uncertain Future: Forecasting from Static Images using Variational
  Autoencoders
An Uncertain Future: Forecasting from Static Images using Variational Autoencoders
Jacob Walker
Carl Doersch
Abhinav Gupta
M. Hebert
VGen
40
513
0
25 Jun 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,667
0
21 Dec 2014
Variational cross-validation of slow dynamical modes in molecular
  kinetics
Variational cross-validation of slow dynamical modes in molecular kinetics
R. McGibbon
Vijay S. Pande
63
175
0
30 Jul 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
450
16,933
0
20 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,292
0
20 Dec 2013
Generalized Denoising Auto-Encoders as Generative Models
Generalized Denoising Auto-Encoders as Generative Models
Yoshua Bengio
L. Yao
Guillaume Alain
Pascal Vincent
101
540
0
29 May 2013
A variational approach to modeling slow processes in stochastic
  dynamical systems
A variational approach to modeling slow processes in stochastic dynamical systems
Frank Noé
Feliks Nuske
72
294
0
29 Nov 2012
1