ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.08513
  4. Cited By
Calibration for the (Computationally-Identifiable) Masses

Calibration for the (Computationally-Identifiable) Masses

22 November 2017
Úrsula Hébert-Johnson
Michael P. Kim
Omer Reingold
G. Rothblum
    FaML
ArXivPDFHTML

Papers citing "Calibration for the (Computationally-Identifiable) Masses"

24 / 24 papers shown
Title
Evaluating Model Performance Under Worst-case Subpopulations
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
48
17
0
01 Jul 2024
Low-Degree Multicalibration
Low-Degree Multicalibration
Parikshit Gopalan
Michael P. Kim
M. Singhal
Shengjia Zhao
FaML
UQCV
24
37
0
02 Mar 2022
A comparison of approaches to improve worst-case predictive model
  performance over patient subpopulations
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
Stephen R. Pfohl
Haoran Zhang
Yizhe Xu
Agata Foryciarz
Marzyeh Ghassemi
N. Shah
OOD
34
22
0
27 Aug 2021
Trustworthy AI: A Computational Perspective
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
197
0
12 Jul 2021
Measuring Model Fairness under Noisy Covariates: A Theoretical
  Perspective
Measuring Model Fairness under Noisy Covariates: A Theoretical Perspective
Flavien Prost
Pranjal Awasthi
Nicholas Blumm
A. Kumthekar
Trevor Potter
Li Wei
Xuezhi Wang
Ed H. Chi
Jilin Chen
Alex Beutel
50
15
0
20 May 2021
Local Calibration: Metrics and Recalibration
Local Calibration: Metrics and Recalibration
Rachel Luo
Aadyot Bhatnagar
Yu Bai
Shengjia Zhao
Huan Wang
Caiming Xiong
Silvio Savarese
Stefano Ermon
Edward Schmerling
Marco Pavone
27
14
0
22 Feb 2021
An Empirical Characterization of Fair Machine Learning For Clinical Risk
  Prediction
An Empirical Characterization of Fair Machine Learning For Clinical Risk Prediction
Stephen R. Pfohl
Agata Foryciarz
N. Shah
FaML
33
108
0
20 Jul 2020
Individual Calibration with Randomized Forecasting
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
16
57
0
18 Jun 2020
A Notion of Individual Fairness for Clustering
A Notion of Individual Fairness for Clustering
Matthäus Kleindessner
Pranjal Awasthi
Jamie Morgenstern
FaML
42
30
0
08 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
A survey of bias in Machine Learning through the prism of Statistical
  Parity for the Adult Data Set
A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set
Philippe C. Besse
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
Laurent Risser
FaML
22
63
0
31 Mar 2020
Fair Active Learning
Fair Active Learning
Hadis Anahideh
Abolfazl Asudeh
Saravanan Thirumuruganathan
FaML
46
51
0
06 Jan 2020
Maximum Weighted Loss Discrepancy
Maximum Weighted Loss Discrepancy
Fereshte Khani
Aditi Raghunathan
Percy Liang
28
16
0
08 Jun 2019
Putting Fairness Principles into Practice: Challenges, Metrics, and
  Improvements
Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Allison Woodruff
Christine Luu
Pierre Kreitmann
Jonathan Bischof
Ed H. Chi
FaML
30
150
0
14 Jan 2019
From Soft Classifiers to Hard Decisions: How fair can we be?
From Soft Classifiers to Hard Decisions: How fair can we be?
R. Canetti
A. Cohen
Nishanth Dikkala
Govind Ramnarayan
Sarah Scheffler
Adam D. Smith
FaML
14
59
0
03 Oct 2018
Fairness Without Demographics in Repeated Loss Minimization
Fairness Without Demographics in Repeated Loss Minimization
Tatsunori B. Hashimoto
Megha Srivastava
Hongseok Namkoong
Percy Liang
FaML
19
575
0
20 Jun 2018
Fairness Under Composition
Fairness Under Composition
Cynthia Dwork
Christina Ilvento
FaML
31
124
0
15 Jun 2018
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Michael P. Kim
Amirata Ghorbani
James Zou
MLAU
25
336
0
31 May 2018
Probably Approximately Metric-Fair Learning
Probably Approximately Metric-Fair Learning
G. Rothblum
G. Yona
FaML
FedML
21
85
0
08 Mar 2018
Online Learning with an Unknown Fairness Metric
Online Learning with an Unknown Fairness Metric
Stephen Gillen
Christopher Jung
Michael Kearns
Aaron Roth
FaML
37
143
0
20 Feb 2018
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
236
676
0
17 Feb 2018
A comparative study of fairness-enhancing interventions in machine
  learning
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
25
636
0
13 Feb 2018
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup
  Fairness
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
FaML
48
770
0
14 Nov 2017
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1