Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.08513
Cited By
Calibration for the (Computationally-Identifiable) Masses
22 November 2017
Úrsula Hébert-Johnson
Michael P. Kim
Omer Reingold
G. Rothblum
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Calibration for the (Computationally-Identifiable) Masses"
24 / 24 papers shown
Title
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
48
17
0
01 Jul 2024
Low-Degree Multicalibration
Parikshit Gopalan
Michael P. Kim
M. Singhal
Shengjia Zhao
FaML
UQCV
22
37
0
02 Mar 2022
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
Stephen R. Pfohl
Haoran Zhang
Yizhe Xu
Agata Foryciarz
Marzyeh Ghassemi
N. Shah
OOD
34
22
0
27 Aug 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
197
0
12 Jul 2021
Measuring Model Fairness under Noisy Covariates: A Theoretical Perspective
Flavien Prost
Pranjal Awasthi
Nicholas Blumm
A. Kumthekar
Trevor Potter
Li Wei
Xuezhi Wang
Ed H. Chi
Jilin Chen
Alex Beutel
50
15
0
20 May 2021
Local Calibration: Metrics and Recalibration
Rachel Luo
Aadyot Bhatnagar
Yu Bai
Shengjia Zhao
Huan Wang
Caiming Xiong
Silvio Savarese
Stefano Ermon
Edward Schmerling
Marco Pavone
27
14
0
22 Feb 2021
An Empirical Characterization of Fair Machine Learning For Clinical Risk Prediction
Stephen R. Pfohl
Agata Foryciarz
N. Shah
FaML
33
108
0
20 Jul 2020
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
16
57
0
18 Jun 2020
A Notion of Individual Fairness for Clustering
Matthäus Kleindessner
Pranjal Awasthi
Jamie Morgenstern
FaML
40
30
0
08 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set
Philippe C. Besse
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
Laurent Risser
FaML
22
63
0
31 Mar 2020
Fair Active Learning
Hadis Anahideh
Abolfazl Asudeh
Saravanan Thirumuruganathan
FaML
46
51
0
06 Jan 2020
Maximum Weighted Loss Discrepancy
Fereshte Khani
Aditi Raghunathan
Percy Liang
25
16
0
08 Jun 2019
Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Allison Woodruff
Christine Luu
Pierre Kreitmann
Jonathan Bischof
Ed H. Chi
FaML
30
150
0
14 Jan 2019
From Soft Classifiers to Hard Decisions: How fair can we be?
R. Canetti
A. Cohen
Nishanth Dikkala
Govind Ramnarayan
Sarah Scheffler
Adam D. Smith
FaML
11
59
0
03 Oct 2018
Fairness Without Demographics in Repeated Loss Minimization
Tatsunori B. Hashimoto
Megha Srivastava
Hongseok Namkoong
Percy Liang
FaML
19
575
0
20 Jun 2018
Fairness Under Composition
Cynthia Dwork
Christina Ilvento
FaML
31
124
0
15 Jun 2018
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Michael P. Kim
Amirata Ghorbani
James Zou
MLAU
25
336
0
31 May 2018
Probably Approximately Metric-Fair Learning
G. Rothblum
G. Yona
FaML
FedML
21
85
0
08 Mar 2018
Online Learning with an Unknown Fairness Metric
Stephen Gillen
Christopher Jung
Michael Kearns
Aaron Roth
FaML
37
143
0
20 Feb 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
236
676
0
17 Feb 2018
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
25
636
0
13 Feb 2018
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
FaML
48
770
0
14 Nov 2017
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1