Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.08014
Cited By
The Riemannian Geometry of Deep Generative Models
21 November 2017
Hang Shao
Abhishek Kumar
P. T. Fletcher
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Riemannian Geometry of Deep Generative Models"
50 / 103 papers shown
Title
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Shinnosuke Saito
Takashi Matsubara
DiffM
82
1
0
28 Apr 2025
Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Yunxuan Cai
Sitao Xiang
Zongjian Li
Haiwei Chen
Yajie Zhao
44
0
0
21 Apr 2025
Tangentially Aligned Integrated Gradients for User-Friendly Explanations
Lachlan Simpson
Federico Costanza
Kyle Millar
A. Cheng
Cheng-Chew Lim
Hong-Gunn Chew
FAtt
86
2
0
11 Mar 2025
Investigating Image Manifolds of 3D Objects: Learning, Shape Analysis, and Comparisons
Benjamin Beaudett
Shenyuan Liang
Anuj Srivastava
58
0
0
09 Mar 2025
Riemannian Integrated Gradients: A Geometric View of Explainable AI
Federico Costanza
Lachlan Simpson
42
0
0
02 Mar 2025
A Sample-Level Evaluation and Generative Framework for Model Inversion Attacks
Haoyang Li
Li Bai
Qingqing Ye
Haibo Hu
Yaxin Xiao
Huadi Zheng
Jianliang Xu
66
0
0
26 Feb 2025
Analyzing Deep Transformer Models for Time Series Forecasting via Manifold Learning
Ilya Kaufman
Omri Azencot
AI4TS
31
2
0
17 Oct 2024
SRIF: Semantic Shape Registration Empowered by Diffusion-based Image Morphing and Flow Estimation
Mingze Sun
Chen Guo
Puhua Jiang
Shiwei Mao
Yurun Chen
Ruqi Huang
69
4
0
18 Sep 2024
Manifold Learning via Foliations and Knowledge Transfer
E. Tron
E. Fioresi
35
1
0
11 Sep 2024
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Melanie F. Pradier
Javier González
CML
50
0
0
09 Sep 2024
(Deep) Generative Geodesics
Beomsu Kim
Michael Puthawala
Jong Chul Ye
Emanuele Sansone
28
0
0
15 Jul 2024
Varying Manifolds in Diffusion: From Time-varying Geometries to Visual Saliency
Junhao Chen
Manyi Li
Zherong Pan
Xifeng Gao
Changhe Tu
DiffM
43
2
0
07 Jun 2024
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
Maciej Trzaskowski
Quan Nguyen
Fred Roosta
AAML
29
4
0
16 May 2024
Pulling back symmetric Riemannian geometry for data analysis
W. Diepeveen
29
2
0
11 Mar 2024
A Differential Geometric View and Explainability of GNN on Evolving Graphs
Yazheng Liu
Xi Zhang
Sihong Xie
21
3
0
11 Mar 2024
Manifold Preserving Guided Diffusion
Yutong He
Naoki Murata
Chieh-Hsin Lai
Yuhta Takida
Toshimitsu Uesaka
...
Wei-Hsiang Liao
Yuki Mitsufuji
J. Zico Kolter
Ruslan Salakhutdinov
Stefano Ermon
DiffM
116
66
0
28 Nov 2023
Controlling the Output of a Generative Model by Latent Feature Vector Shifting
Róbert Belanec
Peter Lacko
Kristína Malinovská
22
1
0
15 Nov 2023
MMP++: Motion Manifold Primitives with Parametric Curve Models
Yonghyeon Lee
34
4
0
26 Oct 2023
Unsupervised Discovery of Interpretable Directions in h-space of Pre-trained Diffusion Models
Zijian Zhang
Luping Liu
Zhijie Lin
Yichen Zhu
Zhou Zhao
DiffM
42
4
0
15 Oct 2023
From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
Irene Cannistraci
Luca Moschella
Marco Fumero
Valentino Maiorca
Emanuele Rodolà
43
12
0
02 Oct 2023
A Geometric Perspective on Autoencoders
Yonghyeon Lee
18
6
0
15 Sep 2023
Understanding the Latent Space of Diffusion Models through the Lens of Riemannian Geometry
Yong-Hyun Park
Mingi Kwon
J. Choi
Junghyo Jo
Youngjung Uh
DiffM
40
60
0
24 Jul 2023
Surge Routing: Event-informed Multiagent Reinforcement Learning for Autonomous Rideshare
Daniel Garces
Stephanie Gil
AI4TS
28
2
0
05 Jul 2023
Smoothing the Rough Edges: Evaluating Automatically Generated Multi-Lattice Transitions
Martha Baldwin
N. Meisel
Christopher McComb
16
5
0
13 Jun 2023
Data Representations' Study of Latent Image Manifolds
Ilya Kaufman
Omri Azencot
14
7
0
31 May 2023
Which Models have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness
Suraj Srinivas
Sebastian Bordt
Hima Lakkaraju
AAML
30
12
0
30 May 2023
Learning Pose Image Manifolds Using Geometry-Preserving GANs and Elasticae
Shenyuan Liang
Pavan Turaga
Anuj Srivastava
33
0
0
17 May 2023
VTAE: Variational Transformer Autoencoder with Manifolds Learning
Pourya Shamsolmoali
Masoumeh Zareapoor
Huiyu Zhou
Dacheng Tao
Xuelong Li
DRL
36
11
0
03 Apr 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
26
1
0
24 Mar 2023
Geometry-Aware Latent Representation Learning for Modeling Disease Progression of Barrett's Esophagus
Vivien van Veldhuizen
DRL
41
0
0
17 Mar 2023
Unsupervised Discovery of Semantic Latent Directions in Diffusion Models
Yong-Hyun Park
Mingi Kwon
Junghyo Jo
Youngjung Uh
DiffM
41
22
0
24 Feb 2023
GANalyzer: Analysis and Manipulation of GANs Latent Space for Controllable Face Synthesis
A. P. Fard
Mohammad H. Mahoor
S. Lamer
Timothy D. Sweeny
GAN
CVBM
34
3
0
02 Feb 2023
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
Cengiz Pehlevan
MLT
AI4CE
28
6
0
26 Jan 2023
Latent Spectral Regularization for Continual Learning
Emanuele Frascaroli
Riccardo Benaglia
Matteo Boschini
Luca Moschella
Cosimo Fiorini
Emanuele Rodolà
Simone Calderara
BDL
CLL
34
3
0
09 Jan 2023
Controllable GAN Synthesis Using Non-Rigid Structure-from-Motion
René Haas
Stella Grasshof
Sami S. Brandt
3DV
21
2
0
14 Nov 2022
A unified model for continuous conditional video prediction
Xi Ye
Guillaume-Alexandre Bilodeau
AI4TS
47
7
0
11 Oct 2022
Deep Invertible Approximation of Topologically Rich Maps between Manifolds
Michael Puthawala
Matti Lassas
Ivan Dokmanić
Pekka Pankka
Maarten V. de Hoop
MedIm
26
0
0
02 Oct 2022
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
37
21
0
15 Sep 2022
Convergent autoencoder approximation of low bending and low distortion manifold embeddings
Juliane Braunsmann
Marko Rajković
M. Rumpf
B. Wirth
DRL
24
2
0
22 Aug 2022
Adversarial robustness of VAEs through the lens of local geometry
Asif Khan
Amos Storkey
AAML
DRL
23
3
0
08 Aug 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
34
29
0
16 Jun 2022
The Manifold Hypothesis for Gradient-Based Explanations
Sebastian Bordt
Uddeshya Upadhyay
Zeynep Akata
U. V. Luxburg
FAtt
AAML
31
12
0
15 Jun 2022
Diffeomorphic Counterfactuals with Generative Models
Ann-Kathrin Dombrowski
Jan E. Gerken
Klaus-Robert Muller
Pan Kessel
DiffM
BDL
37
15
0
10 Jun 2022
Manifold Characteristics That Predict Downstream Task Performance
Ruan van der Merwe
Gregory Newman
E. Barnard
AAML
16
1
0
16 May 2022
Deep Learning and Synthetic Media
Raphaël Millière
26
18
0
11 May 2022
Reactive Motion Generation on Learned Riemannian Manifolds
Hadi Beik-Mohammadi
Søren Hauberg
Georgios Arvanitidis
Gerhard Neumann
Leonel Rozo
24
11
0
15 Mar 2022
Discriminating Against Unrealistic Interpolations in Generative Adversarial Networks
Henning Petzka
Ted Kronvall
C. Sminchisescu
GAN
33
2
0
02 Mar 2022
Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI
Jörg Sander
B. D. de Vos
Ivana Ivsgum
DiffM
MedIm
13
15
0
18 Feb 2022
Rayleigh EigenDirections (REDs): GAN latent space traversals for multidimensional features
Guha Balakrishnan
Raghudeep Gadde
Aleix M. Martinez
Pietro Perona
44
3
0
25 Jan 2022
Adaptive Feature Interpolation for Low-Shot Image Generation
M. Dai
Haibin Hang
Xiaoyang Guo
GAN
22
12
0
04 Dec 2021
1
2
3
Next