ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.07410
  4. Cited By
Disentangling Factors of Variation by Mixing Them

Disentangling Factors of Variation by Mixing Them

20 November 2017
Qiyang Hu
Attila Szabó
Tiziano Portenier
Matthias Zwicker
Paolo Favaro
    OCL
    CoGe
    DRL
ArXivPDFHTML

Papers citing "Disentangling Factors of Variation by Mixing Them"

18 / 18 papers shown
Title
On the Biometric Capacity of Generative Face Models
On the Biometric Capacity of Generative Face Models
Vishnu Naresh Boddeti
Gautam Sreekumar
Arun Ross
CVBM
25
4
0
03 Aug 2023
NashAE: Disentangling Representations through Adversarial Covariance
  Minimization
NashAE: Disentangling Representations through Adversarial Covariance Minimization
Eric C. Yeats
Frank Liu
David A. P. Womble
Hai Helen Li
CML
38
10
0
21 Sep 2022
Controllable and Guided Face Synthesis for Unconstrained Face
  Recognition
Controllable and Guided Face Synthesis for Unconstrained Face Recognition
Feng Liu
Minchul Kim
Anil Jain
Xiaoming Liu
CVBM
25
38
0
20 Jul 2022
Disentangling representations in Restricted Boltzmann Machines without
  adversaries
Disentangling representations in Restricted Boltzmann Machines without adversaries
Jorge Fernandez-de-Cossio-Diaz
Simona Cocco
R. Monasson
DRL
40
13
0
23 Jun 2022
GIRAFFE HD: A High-Resolution 3D-aware Generative Model
GIRAFFE HD: A High-Resolution 3D-aware Generative Model
Yang Xue
Yuheng Li
Krishna Kumar Singh
Yong Jae Lee
31
99
0
28 Mar 2022
StyleFusion: A Generative Model for Disentangling Spatial Segments
StyleFusion: A Generative Model for Disentangling Spatial Segments
Omer Kafri
Or Patashnik
Yuval Alaluf
Daniel Cohen-Or
26
37
0
15 Jul 2021
Finding an Unsupervised Image Segmenter in Each of Your Deep Generative
  Models
Finding an Unsupervised Image Segmenter in Each of Your Deep Generative Models
Luke Melas-Kyriazi
Christian Rupprecht
Iro Laina
Andrea Vedaldi
OCL
38
53
0
17 May 2021
Generating Furry Cars: Disentangling Object Shape & Appearance across
  Multiple Domains
Generating Furry Cars: Disentangling Object Shape & Appearance across Multiple Domains
Utkarsh Ojha
Krishna Kumar Singh
Yong Jae Lee
OOD
24
6
0
05 Apr 2021
Learning disentangled representations via product manifold projection
Learning disentangled representations via product manifold projection
Marco Fumero
Luca Cosmo
Simone Melzi
Emanuele Rodolà
CoGe
DRL
18
22
0
02 Mar 2021
Towards Purely Unsupervised Disentanglement of Appearance and Shape for
  Person Images Generation
Towards Purely Unsupervised Disentanglement of Appearance and Shape for Person Images Generation
Hongtao Yang
Tong Zhang
Wenbing Huang
Xuming He
Fatih Porikli
22
4
0
26 Jul 2020
Swapping Autoencoder for Deep Image Manipulation
Swapping Autoencoder for Deep Image Manipulation
Taesung Park
Jun-Yan Zhu
Oliver Wang
Jingwan Lu
Eli Shechtman
Alexei A. Efros
Richard Y. Zhang
25
332
0
01 Jul 2020
Disentanglement for Discriminative Visual Recognition
Disentanglement for Discriminative Visual Recognition
Xiaofeng Liu
DRL
24
6
0
14 Jun 2020
Cross-domain Face Presentation Attack Detection via Multi-domain
  Disentangled Representation Learning
Cross-domain Face Presentation Attack Detection via Multi-domain Disentangled Representation Learning
Guoqing Wang
Hu Han
Shiguang Shan
Xilin Chen
CVBM
OOD
19
168
0
04 Apr 2020
Guided Variational Autoencoder for Disentanglement Learning
Guided Variational Autoencoder for Disentanglement Learning
Zheng Ding
Yifan Xu
Weijian Xu
Gaurav Parmar
Yang Yang
Max Welling
Z. Tu
DRL
CoGe
34
106
0
02 Apr 2020
Unsupervised Generative 3D Shape Learning from Natural Images
Unsupervised Generative 3D Shape Learning from Natural Images
Attila Szabó
Givi Meishvili
Paolo Favaro
GAN
3DH
3DV
17
69
0
01 Oct 2019
Y-Autoencoders: disentangling latent representations via
  sequential-encoding
Y-Autoencoders: disentangling latent representations via sequential-encoding
Massimiliano Patacchiola
P. Fox-Roberts
E. Rosten
OOD
DRL
21
13
0
25 Jul 2019
DualDis: Dual-Branch Disentangling with Adversarial Learning
DualDis: Dual-Branch Disentangling with Adversarial Learning
Thomas Robert
Nicolas Thome
Matthieu Cord
CoGe
DRL
25
4
0
03 Jun 2019
FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained
  Object Generation and Discovery
FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery
Krishna Kumar Singh
Utkarsh Ojha
Yong Jae Lee
OCL
27
131
0
27 Nov 2018
1