ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.07211
  4. Cited By
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical
  Gaussians

List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians

20 November 2017
Ilias Diakonikolas
D. Kane
Alistair Stewart
ArXivPDFHTML

Papers citing "List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians"

43 / 43 papers shown
Title
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Ilias Diakonikolas
Giannis Iakovidis
D. Kane
Thanasis Pittas
87
0
0
20 Feb 2025
Entangled Mean Estimation in High-Dimensions
Entangled Mean Estimation in High-Dimensions
Ilias Diakonikolas
D. Kane
Sihan Liu
Thanasis Pittas
45
1
0
10 Jan 2025
LiD-FL: Towards List-Decodable Federated Learning
LiD-FL: Towards List-Decodable Federated Learning
Hong Liu
Liren Shan
Han Bao
Ronghui You
Yuhao Yi
Jiancheng Lv
FedML
49
0
0
09 Aug 2024
SQ Lower Bounds for Learning Mixtures of Linear Classifiers
SQ Lower Bounds for Learning Mixtures of Linear Classifiers
Ilias Diakonikolas
D. Kane
Yuxin Sun
30
3
0
18 Oct 2023
Private Distribution Learning with Public Data: The View from Sample
  Compression
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
49
11
0
11 Aug 2023
High Dimensional Distributed Gradient Descent with Arbitrary Number of
  Byzantine Attackers
High Dimensional Distributed Gradient Descent with Arbitrary Number of Byzantine Attackers
Puning Zhao
Zhiguo Wan
OOD
FedML
50
4
0
25 Jul 2023
SQ Lower Bounds for Learning Bounded Covariance GMMs
SQ Lower Bounds for Learning Bounded Covariance GMMs
Ilias Diakonikolas
D. Kane
Thanasis Pittas
Nikos Zarifis
40
0
0
22 Jun 2023
On the robust learning mixtures of linear regressions
On the robust learning mixtures of linear regressions
Ying-Min Huang
Liang Chen
OOD
21
0
0
23 May 2023
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
OOD
36
10
0
04 May 2023
Near Optimal Private and Robust Linear Regression
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Efficient List-Decodable Regression using Batches
Efficient List-Decodable Regression using Batches
Abhimanyu Das
Ayush Jain
Weihao Kong
Rajat Sen
28
4
0
23 Nov 2022
A Characterization of List Learnability
A Characterization of List Learnability
Moses Charikar
Chirag Pabbaraju
37
13
0
07 Nov 2022
A Fourier Approach to Mixture Learning
A Fourier Approach to Mixture Learning
Mingda Qiao
Guru Guruganesh
A. S. Rawat
Kumar Avinava Dubey
Manzil Zaheer
22
3
0
05 Oct 2022
List-Decodable Covariance Estimation
List-Decodable Covariance Estimation
Misha Ivkov
Pravesh Kothari
24
7
0
22 Jun 2022
Optimal SQ Lower Bounds for Robustly Learning Discrete Product
  Distributions and Ising Models
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models
Ilias Diakonikolas
D. Kane
Yuxin Sun
33
1
0
09 Jun 2022
Robust Sparse Mean Estimation via Sum of Squares
Robust Sparse Mean Estimation via Sum of Squares
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
28
21
0
07 Jun 2022
List-Decodable Sparse Mean Estimation
List-Decodable Sparse Mean Estimation
Shiwei Zeng
Jie Shen
29
9
0
28 May 2022
Streaming Algorithms for High-Dimensional Robust Statistics
Streaming Algorithms for High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
24
21
0
26 Apr 2022
Continuous LWE is as Hard as LWE & Applications to Learning Gaussian
  Mixtures
Continuous LWE is as Hard as LWE & Applications to Learning Gaussian Mixtures
A. Gupte
Neekon Vafa
Vinod Vaikuntanathan
25
39
0
06 Apr 2022
Differentially-Private Clustering of Easy Instances
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
27
22
0
29 Dec 2021
Non-Gaussian Component Analysis via Lattice Basis Reduction
Non-Gaussian Component Analysis via Lattice Basis Reduction
Ilias Diakonikolas
D. Kane
41
18
0
16 Dec 2021
Lattice-Based Methods Surpass Sum-of-Squares in Clustering
Lattice-Based Methods Surpass Sum-of-Squares in Clustering
Ilias Zadik
M. Song
Alexander S. Wein
Joan Bruna
22
35
0
07 Dec 2021
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Jingkai Li
Allen Liu
30
23
0
01 Dec 2021
Kalman Filtering with Adversarial Corruptions
Kalman Filtering with Adversarial Corruptions
Sitan Chen
Frederic Koehler
Ankur Moitra
Morris Yau
AAML
27
10
0
11 Nov 2021
Robust Estimation for Random Graphs
Robust Estimation for Random Graphs
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
32
8
0
09 Nov 2021
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
Ilias Diakonikolas
D. Kane
Alistair Stewart
Yuxin Sun
24
15
0
03 Feb 2021
SoS Degree Reduction with Applications to Clustering and Robust Moment
  Estimation
SoS Degree Reduction with Applications to Clustering and Robust Moment Estimation
David Steurer
Stefan Tiegel
29
10
0
05 Jan 2021
Small Covers for Near-Zero Sets of Polynomials and Learning Latent
  Variable Models
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models
Ilias Diakonikolas
D. Kane
21
32
0
14 Dec 2020
Optimal Mean Estimation without a Variance
Optimal Mean Estimation without a Variance
Yeshwanth Cherapanamjeri
Nilesh Tripuraneni
Peter L. Bartlett
Michael I. Jordan
26
21
0
24 Nov 2020
Robust High Dimensional Expectation Maximization Algorithm via Trimmed
  Hard Thresholding
Robust High Dimensional Expectation Maximization Algorithm via Trimmed Hard Thresholding
Di Wang
Xiangyu Guo
Shi Li
Jinhui Xu
23
3
0
19 Oct 2020
Optimal Robust Linear Regression in Nearly Linear Time
Optimal Robust Linear Regression in Nearly Linear Time
Yeshwanth Cherapanamjeri
Efe Aras
Nilesh Tripuraneni
Michael I. Jordan
Nicolas Flammarion
Peter L. Bartlett
35
35
0
16 Jul 2020
Robustly Learning any Clusterable Mixture of Gaussians
Robustly Learning any Clusterable Mixture of Gaussians
Ilias Diakonikolas
Samuel B. Hopkins
D. Kane
Sushrut Karmalkar
38
45
0
13 May 2020
Outlier-Robust Clustering of Non-Spherical Mixtures
Outlier-Robust Clustering of Non-Spherical Mixtures
Ainesh Bakshi
Pravesh Kothari
27
31
0
06 May 2020
List Decodable Subspace Recovery
List Decodable Subspace Recovery
P. Raghavendra
Morris Yau
38
25
0
07 Feb 2020
Outlier-Robust High-Dimensional Sparse Estimation via Iterative
  Filtering
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering
Ilias Diakonikolas
Sushrut Karmalkar
D. Kane
Eric Price
Alistair Stewart
23
41
0
19 Nov 2019
Robust subgaussian estimation of a mean vector in nearly linear time
Robust subgaussian estimation of a mean vector in nearly linear time
Jules Depersin
Guillaume Lecué
21
92
0
07 Jun 2019
List-Decodable Linear Regression
List-Decodable Linear Regression
Sushrut Karmalkar
Adam R. Klivans
Pravesh Kothari
34
74
0
14 May 2019
The Optimal Approximation Factor in Density Estimation
The Optimal Approximation Factor in Density Estimation
Olivier Bousquet
D. Kane
Shay Moran
19
18
0
10 Feb 2019
Iterative Least Trimmed Squares for Mixed Linear Regression
Iterative Least Trimmed Squares for Mixed Linear Regression
Yanyao Shen
Sujay Sanghavi
27
25
0
10 Feb 2019
Conditional Linear Regression
Conditional Linear Regression
Diego Calderon
Brendan Juba
Sirui Li
Zong-Yi Li
Lisa Ruan
20
4
0
06 Jun 2018
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
27
161
0
31 May 2018
Robust Learning of Fixed-Structure Bayesian Networks
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
46
46
0
23 Jun 2016
Robust Estimators in High Dimensions without the Computational
  Intractability
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
21
505
0
21 Apr 2016
1