Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.07211
Cited By
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians
20 November 2017
Ilias Diakonikolas
D. Kane
Alistair Stewart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians"
43 / 43 papers shown
Title
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Ilias Diakonikolas
Giannis Iakovidis
D. Kane
Thanasis Pittas
87
0
0
20 Feb 2025
Entangled Mean Estimation in High-Dimensions
Ilias Diakonikolas
D. Kane
Sihan Liu
Thanasis Pittas
45
1
0
10 Jan 2025
LiD-FL: Towards List-Decodable Federated Learning
Hong Liu
Liren Shan
Han Bao
Ronghui You
Yuhao Yi
Jiancheng Lv
FedML
49
0
0
09 Aug 2024
SQ Lower Bounds for Learning Mixtures of Linear Classifiers
Ilias Diakonikolas
D. Kane
Yuxin Sun
30
3
0
18 Oct 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
49
11
0
11 Aug 2023
High Dimensional Distributed Gradient Descent with Arbitrary Number of Byzantine Attackers
Puning Zhao
Zhiguo Wan
OOD
FedML
50
4
0
25 Jul 2023
SQ Lower Bounds for Learning Bounded Covariance GMMs
Ilias Diakonikolas
D. Kane
Thanasis Pittas
Nikos Zarifis
40
0
0
22 Jun 2023
On the robust learning mixtures of linear regressions
Ying-Min Huang
Liang Chen
OOD
21
0
0
23 May 2023
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
OOD
36
10
0
04 May 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Efficient List-Decodable Regression using Batches
Abhimanyu Das
Ayush Jain
Weihao Kong
Rajat Sen
28
4
0
23 Nov 2022
A Characterization of List Learnability
Moses Charikar
Chirag Pabbaraju
37
13
0
07 Nov 2022
A Fourier Approach to Mixture Learning
Mingda Qiao
Guru Guruganesh
A. S. Rawat
Kumar Avinava Dubey
Manzil Zaheer
22
3
0
05 Oct 2022
List-Decodable Covariance Estimation
Misha Ivkov
Pravesh Kothari
24
7
0
22 Jun 2022
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models
Ilias Diakonikolas
D. Kane
Yuxin Sun
33
1
0
09 Jun 2022
Robust Sparse Mean Estimation via Sum of Squares
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
28
21
0
07 Jun 2022
List-Decodable Sparse Mean Estimation
Shiwei Zeng
Jie Shen
29
9
0
28 May 2022
Streaming Algorithms for High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
24
21
0
26 Apr 2022
Continuous LWE is as Hard as LWE & Applications to Learning Gaussian Mixtures
A. Gupte
Neekon Vafa
Vinod Vaikuntanathan
25
39
0
06 Apr 2022
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
27
22
0
29 Dec 2021
Non-Gaussian Component Analysis via Lattice Basis Reduction
Ilias Diakonikolas
D. Kane
41
18
0
16 Dec 2021
Lattice-Based Methods Surpass Sum-of-Squares in Clustering
Ilias Zadik
M. Song
Alexander S. Wein
Joan Bruna
22
35
0
07 Dec 2021
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Jingkai Li
Allen Liu
30
23
0
01 Dec 2021
Kalman Filtering with Adversarial Corruptions
Sitan Chen
Frederic Koehler
Ankur Moitra
Morris Yau
AAML
27
10
0
11 Nov 2021
Robust Estimation for Random Graphs
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
32
8
0
09 Nov 2021
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
Ilias Diakonikolas
D. Kane
Alistair Stewart
Yuxin Sun
24
15
0
03 Feb 2021
SoS Degree Reduction with Applications to Clustering and Robust Moment Estimation
David Steurer
Stefan Tiegel
29
10
0
05 Jan 2021
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models
Ilias Diakonikolas
D. Kane
21
32
0
14 Dec 2020
Optimal Mean Estimation without a Variance
Yeshwanth Cherapanamjeri
Nilesh Tripuraneni
Peter L. Bartlett
Michael I. Jordan
26
21
0
24 Nov 2020
Robust High Dimensional Expectation Maximization Algorithm via Trimmed Hard Thresholding
Di Wang
Xiangyu Guo
Shi Li
Jinhui Xu
23
3
0
19 Oct 2020
Optimal Robust Linear Regression in Nearly Linear Time
Yeshwanth Cherapanamjeri
Efe Aras
Nilesh Tripuraneni
Michael I. Jordan
Nicolas Flammarion
Peter L. Bartlett
35
35
0
16 Jul 2020
Robustly Learning any Clusterable Mixture of Gaussians
Ilias Diakonikolas
Samuel B. Hopkins
D. Kane
Sushrut Karmalkar
38
45
0
13 May 2020
Outlier-Robust Clustering of Non-Spherical Mixtures
Ainesh Bakshi
Pravesh Kothari
27
31
0
06 May 2020
List Decodable Subspace Recovery
P. Raghavendra
Morris Yau
38
25
0
07 Feb 2020
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering
Ilias Diakonikolas
Sushrut Karmalkar
D. Kane
Eric Price
Alistair Stewart
23
41
0
19 Nov 2019
Robust subgaussian estimation of a mean vector in nearly linear time
Jules Depersin
Guillaume Lecué
21
92
0
07 Jun 2019
List-Decodable Linear Regression
Sushrut Karmalkar
Adam R. Klivans
Pravesh Kothari
34
74
0
14 May 2019
The Optimal Approximation Factor in Density Estimation
Olivier Bousquet
D. Kane
Shay Moran
19
18
0
10 Feb 2019
Iterative Least Trimmed Squares for Mixed Linear Regression
Yanyao Shen
Sujay Sanghavi
27
25
0
10 Feb 2019
Conditional Linear Regression
Diego Calderon
Brendan Juba
Sirui Li
Zong-Yi Li
Lisa Ruan
20
4
0
06 Jun 2018
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
27
161
0
31 May 2018
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
46
46
0
23 Jun 2016
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
21
505
0
21 Apr 2016
1